Skip to main content
Log in

Grain growth in ice

  • Published:
Il Nuovo Cimento C

Summary

Grain growth is studied in polycrystalline ice, consisting of elongated grains, of (200÷300) μm mean width\(\bar w\) and (2÷3) mm mean length\(\bar l\). The samples are annealed at different temperatures, between 0°C and −10°C. It is found that\(\bar l\) is not affected by annealing, while\(\bar w\) increases with the annealing time. Below the melting point,\(\bar w\)(t) tends to a limit value\(\bar w_s \). This behaviour is related to the pinning action of air bubbles, which would be similar to that found for solid inclusions in metals. By assuming\(\bar w_s = {{\bar d} \mathord{\left/ {\vphantom {{\bar d} f}} \right. \kern-\nulldelimiterspace} f}\) where\(\bar d\) is the mean bubble diameter andf is the volume fraction of air dissolved in water, reasonable values are found for\(\bar d\). The activation energy of the phenomenon is evaluated on the basis of the present and of Jellinek and Gouda's results. It is foundQ=0.6 eV, which value approximately coincides with that for bulk self-diffusion as it occurs for metals, several degrees below the melting point. This coincidence suggests that, for ice, grain growth would be controlled by bulk impurity diffusion up to the very melting point.

Riassunto

Si studia l'accrescimento di grano in ghiaccio policristallino, formato di grani allungati, con spessore medio\(\bar w\) di (200÷300) μm e lunghezza media\(\bar l\) di (2÷3) mm. I campioni si fanno ricuocere a diverse temperature, fra 0°C e−10°C. Si osserva che\(\bar l\) non è modificata dalla ricottura mentre\(\bar w\) cresce col tempo del trattamento. Al di sotto del punto di fusione,\(\bar w\)(t) tende a un valore limite\(\bar w_s \). Questo comportamento si mette in relazione con l'azione inchiodante delle bolle d'aria, che si considera simile a quella attribuita a inclusioni solide in metalli. Supponendo\(\bar w_s = {{\bar d} \mathord{\left/ {\vphantom {{\bar d} f}} \right. \kern-\nulldelimiterspace} f}\), dove\(\bar d\) è il diametro medio delle bolle ef è la frazione di volume dell'aria dissolta nell'acqua, si ottengono valori ragionevoli per\(\bar d\). Si valuta l'energia d'attivazione del fenomeno, sulla base dei risultati attuali e di quelli di Jellinek e Gouda. Il valore ottenuto,Q=0.6 eV, coincide approssimativamente con quello di autodiffusione di volume, come succede per i metalli, a temperature di vari gradi inferiori al punto di fusione. Questa coincidenza suggerisce che, per il ghiaccio, l'accrescimento di grano sarebbe controllato dalla diffusione di volume d'impurità, praticamente fino al punto di fusione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. G. Jellinek andV. K. Gouda:Phys. Status Solidi,31, 413 (1969).

    Google Scholar 

  2. P. Feltham:Acta Metall.,5, 97 (1957).

    Article  Google Scholar 

  3. N. P. Louat:Acta Metall.,27, 721 (1974).

    Google Scholar 

  4. M. Hillert:Acta Metall.,13, 227 (1965).

    Article  Google Scholar 

  5. A. E. Carte:Bull. Ob. Puy de Dome, 2ème ser. (1961), p. 846.

  6. D. S. Roos:J. Glaciol.,6, 411 (1966).

    ADS  Google Scholar 

  7. C. A. Knight, T. Ashworth andN. C. Knight:J. Atmos. Sci.,35, 1997 (1978).

    Article  ADS  Google Scholar 

  8. F. Prodi andL. Levi:J. Atmos. Sci.,37, 1375 (1980).

    Article  ADS  Google Scholar 

  9. A. N. Aufdermaur, R. List, W. C. Mayes andM. R. de Quervain:Z. Angew. Math. Phys.,14, 574 (1963).

    Article  Google Scholar 

  10. C. J. Simpson, W. C. Winegard andK. T. Aust:Grain Boundary Structure and Properties, edited byG. A. Chadwick andD. A. Smith (London, 1976), p. 201.

  11. V. Yu. Novikov:Acta Metall.,26, 1739 (1978).

    Article  Google Scholar 

  12. V. Yu. Novikov:Acta Metall.,27, 1461 (1979).

    Article  Google Scholar 

  13. O. Hunderi, N. Ryum andH. Westengen:Acta Metall.,27, 161 (1979).

    Article  Google Scholar 

  14. O. Hunderi andR. Ryum:Acta Metall.,29, 1737 (1981).

    Article  Google Scholar 

  15. J. E. Burke:Trans. Amer. Inst. Min. Metall. Pet. Eng.,180, 73 (1949).

    Google Scholar 

  16. V. M. Speight andG. W. Greenwood:Philos. Mag.,9, 683 (1964).

    Google Scholar 

  17. J. N. Carras andW. C. Macklin:Q. J. R. Meteorol. Soc.,101, 127 (1975).

    ADS  Google Scholar 

  18. P. V. Hobbs:Ice Physics (Oxford, 1974).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Comisión Nacional de Energía Atómica, Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Instituto de Matemática, Astronomía y Física, Universidad Nacional de Córdoba and CONICET.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, L., Ceppi, E.A. Grain growth in ice. Il Nuovo Cimento C 5, 445–461 (1982). https://doi.org/10.1007/BF02561650

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02561650

PACS. 92.60

Navigation