A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters

Summary

Metal ions or metal ions in complexes or compounds have been used for centuries to disinfect fluids, solids and tissues. The biocidal effect of silver, with its broad spectrum of activity including bacterial, fungal and viral agents, is particularly well known and the term “oligodynamic activity” was coined for this phenomenon. Silver ions have an affinity to sulfhydryl groups in enzyme systems of the cell wall, through which they interfere with the transmembranous energy transfer and electron transport of bacterial microorganisms. Silver ions also block the respiratory chain of microorganisms reversibly in low concentrations and irreversibly in higher concentrations. Binding to the DNA of bacteria and fungi increases the stability of the bacterial double helix and thus inhibits proliferation. There is no cross resistance with antibiotics and also no induction of antimicrobial resistance by silver ions. The concentrations required for bactericidal activity are in the range 10−9 mol/l. These concentrations can be achieved in solution by the interaction of metallic silver with electrolytes only if there is a large enough surface of silver. By a novel technology, metallic silver is distributed in submicron particles in polyurethane and results in a concentration of 0.8% in an active surface of 450 cm2/g polyurethane. Polyurethane is hygroscopic and rapidly attracts water; the interaction of electrolyte solutions with the extremely finely distributed silver throughout the polyurethane releases bactericidal concentrations of silver ions over a period of years to the surface of the material. The electronegatively charged surface of bacteria attracts the positively charged silver ions. The concentrations released from the polyurethane are far below the toxic concentrations for humans.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Widmer, A.: IV related infections. Prevention and control of nosocomial infections. In:Wenzel, R. P. (ed.). Nosocomial infections, Williams & Wilkins, Baltimore 1993, pp 556–579.

    Google Scholar 

  2. 2.

    v. Eiff, C., Heilmann, C., Herrmann, M., Peters, G.: Basic aspects of the pathogenesis of staphylococcal polymer-associated infections. Infection 27 (Suppl. 1) (1999) S 7–10.

    Google Scholar 

  3. 3.

    Decker, M. D., Edwards, K. M.: Central venous catheter infections. Ped. Clin. North Am. 35 (1988) 579–612.

    CAS  Google Scholar 

  4. 4.

    Smith, R., Meixler, S. M., Simberkoff, M. S.: Excess mortality in critically ill patients with nosocomial bloodstream infections. Chest 100 (1991) 164–167.

    PubMed  CAS  Google Scholar 

  5. 5.

    Martin, M. A., Pfaller, M. A., Wenzel, R. P.: Coagulase negative staphylococcal bacteremia. Ann. Int. Med. 110 (1989) 9–16.

    PubMed  CAS  Google Scholar 

  6. 6.

    Guggenbichler, J.-P., Berchtold, D., Allerberger, F., Bonatti, H., Hager, J., Pfaller, W., Dierich, M. P.:In vitro andin vivo effects of antibiotics on catheters colonized by staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 11 (1992) 408–415.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Arnow, P. M., Quimosing, E. M., Meach, M.: Consequences of intravascular catheter sepsis. Clin. Infect. Dis. 16 (1993) 778–784.

    PubMed  CAS  Google Scholar 

  8. 8.

    Pittet, D., Tarara, D., Wenzel, R. P.: Nosocomial bloodstream infections in critically ill patients. JAMA 271 (1994) 1598–1601.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Gastmeier, P., Weist, K., Rüden, H.: Catheter-associated primary bloodstream infections: epidemiology and preventive methods. Infection 27 (Suppl. 1) (1999) S 1–6.

    Google Scholar 

  10. 10.

    Geitner, U.: Katheterassoziierte Infektionen bei onkologischen Patienten mit Hickmankathetern in Erlangen. Inaugural Dissertation (1997).

  11. 11.

    Tebbs, S. A., Sawyer, A., Elliott, T. S. J.: Influence of surface morphology onin vitro bacterial adherence to central nervous catheters. Br. J. Anaesth. 72 (1994) 587–592.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Schierholz, J., Jansen, B., Steinhauser, H., Peters, G., Schumacher-Perdreau, F., Pulverer, G.: Drug release from antibiotic containing polyurethanes. New Polymer Mat. 3 (1991) 61–72.

    CAS  Google Scholar 

  13. 13.

    Shererzt, R. J., Forman, D. M., Solomon, D. D.: Efficacy of dicloxacillin coated polyurethane catheters in preventing subcutaneousStaphylococcus aureus infections in mice. Antimicrob. Agents Chemother. 33 (1989) 1174–1178.

    Google Scholar 

  14. 14.

    Raad, I., Darouche, R., Hachem, R., Mansouri, M., Bodey, G. P.: The broad spectrum activity and efficacy of catheters coated with minocycline and rifampin. J. Infect. Dis. 173 (1996) 418–424.

    PubMed  CAS  Google Scholar 

  15. 15.

    Report of the ASM Task Force for antimicrobial resistance: Antimicrob. Agents Chemother. Suppl. 1 (1996) 1–16.

    Google Scholar 

  16. 16.

    Bach, A.: Prevention of infections caused by central venous catheters—established and novel measures. Infection 27 (Suppl. 1) (1999) S 11–15.

    Google Scholar 

  17. 17.

    Gilchrist, J.: Personal communication (1997).

  18. 18.

    Golubovich, V. N., Rabotnova, I. L.: Kinetics of growth inhibition by silver ions. Microbiology 43 (1974) 948–950.

    Google Scholar 

  19. 19.

    Moroz, O. G., Kul'skii, L. A., Prokuryakova, N. B., Rudenko, A. V., Florensova, K. M.: Susceptibility of organisms which cause intestinal infections to removal by silver. Khm. Technology 2 (1980) 275–287.

    CAS  Google Scholar 

  20. 20.

    Zhao, G., Stevens, E.: Multiple parameters for the comprehensive evaluation of the susceptibility ofEscherichia coli to the silver ion. BioMetals 11 (1998) 27–32.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Prevot, J., Ouvrard, S., Coiron, C., Festy, B.: Persistance de virus dans des eaux de bassins de natation artificiellement contaminees. Rev. Int. Sci. L'eaux. 2 (1986) 59–66.

    Google Scholar 

  22. 22.

    Hendry, A. T., Stewart, I. O.: Silver resistantEnterobacteriaceae from hospital patients. Can. J. Microbiol. 25 (1979) 915–921.

    PubMed  CAS  Article  Google Scholar 

  23. 23.

    Pumpel, T., Schinner, F.: Silver tolerance and silver accumulation of microorganisms from soil materials of a silver mine. Appl. Microbiol. Biotechnol. 24 (1986) 244–251.

    Article  Google Scholar 

  24. 24.

    Thurman, R. B., Gerba, Ch. P.: the molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit. Rev. Environmental Control 18 (1989) 195–315.

    Google Scholar 

  25. 25.

    Just, J., Szniolis, A.: Germicidal properties of silver in water. J. Am. Water Works 28 (1934) 492–451.

    Google Scholar 

  26. 26.

    Peterwig, H. G.: Pharmacology and toxicology of heavy metals: silver. Pharmacol. Ther. 1 (1976) 127–145.

    Google Scholar 

  27. 27.

    Chang, S. L.: Modern concept of disinfection. In: Proc. Natl. Special Conf. Disinfection, American Society of Civil Engineers, New York 1970, p. 635.

  28. 28.

    Williams, R. L., Grashoff, G. J., Williams, D. F.: The biocompatibility of silver. Crit. Rev. Biocompatibil. 5 (1989) 221–243.

    CAS  Google Scholar 

  29. 29.

    Rahn, R. O., Landry, R. C.: Oltraviolet irradiation of nucleic acids complexed with heavy atoms. Phosphorescence and photodimerization of DNA complexed with Ag. Photochem. Photobiol. 18 (1973) 29–38.

    PubMed  CAS  Google Scholar 

  30. 30.

    Rahn, R. O., Setlow, J. K., Landry, L. C.: Ultraviolet irradiation of nucleic acid complexed with heavy atoms. Influence of Ag and Hg on the sensitivity of phage and of transforming DNA to ultraviolet radiation. Photochem. Photobiol. 18 (1973) 39–47.

    PubMed  CAS  Google Scholar 

  31. 31.

    Ricketts, C. R.: Mechanism of prophylaxis by silver compounds against infection and burns. Br. Med. J. 2 (1970) 444–451.

    Article  Google Scholar 

  32. 32.

    Singh, A., Yeager, R., McFeters, G. A.: Assessment ofin vivo revival, growth, and pathogenicity ofEscherichia coli strains after copper and chlorine induced injury. Appl. Environ. Microbiol. 52 (1986) 832–839.

    PubMed  CAS  Google Scholar 

  33. 33.

    Singh, A., McFeters, G. A.: Survival and virulence of copper- and chlorine-stressedYersinia enterocolitica in experimentally infected mice. Appl. Environ. Microbiol. 53 (1987) 1768–1773.

    PubMed  CAS  Google Scholar 

  34. 34.

    Wood, J. M.: Evolutionary aspects of metal ion transport through cell membranes. In:Siegel, H. (ed.) Metal ions in biological systems. Vol. 18. Marcel Dekker, New York 1984, pp. 233–247.

    Google Scholar 

  35. 35.

    Naegeli, von V.: Deut. Schr. Schweiz. Naturforsch. Ges. 33 (1893) 174–182.

    Google Scholar 

  36. 36.

    Wuhrman, K. G., Zobrist, F.: Untersuchung über die bakterizide Wirkung von Silber in Wasser. Mitteilung 142 der Eidgen. Anstalt für Wasserversorgung. Schweiz Hydrol. 20 (1958) 218–255.

    Article  Google Scholar 

  37. 37.

    Cliver, D. O., Foell, W. K., Goepfert, J. M.: Biocidal effects of silver. Final technical report. Contract NAS 9-9300, University of Wisconsin (1971).

  38. 38.

    Chambers, C. W., Proctor, C. M., Kabler, P. W.: Bactericidal effect of low concentrations of silver. J. A. Water Works Assoc. 54 (1962) 208–214.

    CAS  Google Scholar 

  39. 39.

    Slawson, R. M., Lee, H., Trevors, J. T.: Bacterial interactions with silver. BioMetals 3 (1990) 151–154.

    CAS  Google Scholar 

  40. 40.

    Johnson, R., Roberts, P. L., Olsen, R. J., Moyer, K. A., Stamm, W. E.: Prevention of catheter associated urinary tract infection with a silver oxide coated urinary catheter: clinical and microbiological correlates. J. Infect. Dis. 162 (1990) 1145–1150.

    PubMed  CAS  Google Scholar 

  41. 41.

    Guggenbichler, J. P., Krall, T.: Patent EP 65002B1, 28 January 1998.

  42. 42.

    James, G. V.: Water treatment. 4th ed. CRC Press, Cleveland 1971, 38–45.

    Google Scholar 

  43. 43.

    Bechert, T., Böswald, M., Lugauer, S., Greil, J., Regenfus, A., Guggenbichler, J.-P.: Der Erlanger Silberkatheter:In vitro Ergebnisse zur antimikrobiellen Wirksamkeit. Infection 27 (German Suppl.) (1998) S25–31.

    Google Scholar 

  44. 44.

    Krall, Th., Guggenbichler, J. P.: Patent EP 0711113B1, 23 July 1997.

  45. 45.

    Park, G. A.: Adsorption in marine environment. In:Riley, J. P., Skirrow, G. (eds.): Chemical Ocean. Vol. I. Academic Press. New York 1976, pp. 241–256.

    Google Scholar 

  46. 46.

    Joyce-Wîhrmann, R., Münstedt, H.: Determination of the silver ion release from polyurethanes enriched with silver. Infection 27 (Suppl. 1) (1999) S 46–48.

    Google Scholar 

  47. 47.

    Daunderer, M.: Handbuch der Umweltgifte. Toxikologische Einzelstoffinformationen zu Silber III-3, Ergänzungslieferung 5/93. Ecomed-Verlag, Landsberg-Lech 1993, pp. 1–6.

    Google Scholar 

  48. 48.

    Zapata-Sirvent, R. L., Hansbrough, J. F.: Cytotoxicity to human leukocytes by topical antimicrobial agents used for burn care. J. Burn Care Rehabil. 14 (1993) 132–140.

    PubMed  CAS  Article  Google Scholar 

  49. 49.

    Boosalis, G. M., McCall, J. T., Ahrenholz, D. H., Solem, L. D., McCain, C. J.: Serum and urinary silver levels in the thermal injury patient. Surgery 101 (1987) 40–43.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guggenbichler, J.P., Böswald, M., Lugauer, S. et al. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27, S16–S23 (1999). https://doi.org/10.1007/BF02561612

Download citation

Keywords

  • Antimicrobial Activity
  • Polyurethane
  • Central Venous Catheter
  • Metallic Silver
  • High Antimicrobial Activity