Skip to main content
Log in

Counting function asymptotics and the weak Weyl-Berry conjecture for connected domains with fractal boundaries

  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

In this paper, we study the spectral asymptotics for connected fractal domains and Weyl-Berry conjecture. We prove, for some special connected fractal domains, the sharp estimate for second term of counting function asymptotics, which implies that the weak form of the Weyl-Berry conjecture holds for the case. Finally, we also study a naturally connected fractal domain, and we prove, in this case, the weak Weyl-Berry conjecture holds as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl H. Uber die asymptotische Verteilung der Eigenverte. Gott Nach 1911, 110–117

  2. Weyl H. Das asymptotische Vereilungsgesetz der eigenverte linear partieller differential gleichungen. Math Ann, 1912, 71: 441–479

    Article  MathSciNet  Google Scholar 

  3. Metivier G. Etude asymptotique des valuers propres et de la function spectrale de problemes aux limits. These de Doctorat d'Etat, Mathematiques, Universite de Nice, France 1976

    Google Scholar 

  4. Metivier G. Valeurs propres de problemes aux limits elliptiques irreguliers. Bull Soc Math France Mem, 1977, 51–52, 125–219

  5. Seeley R T. A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3. Adv in Math, 1978, 29: 244–269

    Article  MathSciNet  Google Scholar 

  6. Seeley R T. An estimate near the boundary for the spectral function of the Laplace operator. Amer J Math, 1980, 102: 869–902

    Article  MathSciNet  Google Scholar 

  7. Ivrii V Ja. Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct Anal Appl, 1980, 14: 98–106

    Article  MathSciNet  Google Scholar 

  8. Ivrii V Ja. Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary. Lecture Notes in Math, 1100, Springer-verlag, 1984

  9. Melrose R. Weyl's conjecture for manifolds with concave boundary. Geometry of the Laplace Operator, Proc Symp Pure Math 36, Amer Math Soc Providence, 1980

  10. Melrose R. The trace of the wave group. Contemp Math 5, Amer Math Soc Providence, 1984, 127–167

  11. Hörmander L. The analysis of linear partial differential operators. III and IV, Berlin: Springer-Verlag, 1985

    Google Scholar 

  12. Berry M V. Distribution of modes in fractal resonators, structural stability in physics. Berlin: Springer-Verlag, 1979, 51–53

    Google Scholar 

  13. Berry M V. Some geometric aspects of wave motion, wave front dislocations, diffraction, catastrophes, diffractals. Geometry of the Laplace operator, Proc Symp Pure Math 36, Amer Math Soc Providence, 1980, 13–38

  14. Brossard J, Carmona R. Can one hear the dimension of a fractal. Comm Math Phys, 1986, 104: 103–122

    Article  MathSciNet  Google Scholar 

  15. Lapidus M L, Fleckinger-Pell J. Tambour fractal: vers une resolution de la conjecture de Weyl-Berry pour les valeurs propres du Laplacien. C R Acad Sci Paris, Ser 1 Math, 1988, 306: 171–175

    Google Scholar 

  16. Lapidus M L. Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans Amer Math Soc, 1991, 325: 465–529

    Article  MathSciNet  Google Scholar 

  17. Lapidus M L. Vibration of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl-Berry conjecture. Proc Dundee Conference on Ordinary and Partial Differential Equations, 1993, IV: 126–209

  18. Chen H, Sleeman B D. Fractal drums andn-dimensional modified Weyl-Berry conjecture. Comm Math Phys, 1995, 168: 581–607

    Article  MathSciNet  Google Scholar 

  19. Fleckinger-Pelle J, Vassiliev D. An example of a two term asymptotics for the “counting function” of a fractal drum. Trans Amer Math Soc, 1993, 337: 99–116

    Article  MathSciNet  Google Scholar 

  20. Caetano A M. Some domains where the eigenvalues of the Dirichlet Laplacian have non-power second term asymptotic estimates. J Lond Math Soc, 1991, 43(2): 431–450

    MathSciNet  Google Scholar 

  21. Lapidus M L. Spectral and fractal geometry: from the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. Diff Equ and Math Phys, C Bennewitz ed, New York: Academic Press, 1991, 152–182

    Google Scholar 

  22. Lapidus M L, Pomerance C. The Riemann zeta function and the one-dimensional Weyl-Berry conjecture for fractal drums. Proc London Math Soc, 1993, 66(3): 41–69

    MathSciNet  Google Scholar 

  23. Sleeman B D. Some new contributions to the Weyl-Berry conjecture for fractal domains. Intl J Applied Sc and Computations, 1995, 2(2): 344–361

    MathSciNet  Google Scholar 

  24. Kigami J, Lapidus M L. Weyl's problem for the spectral distribution of Laplacians on PCF self-similar fractals. Comm Math Phys, 1993, 158: 93–125

    Article  MathSciNet  Google Scholar 

  25. Gauss C F. Disquisitiones arithmeticae. Leipzig, 1801

  26. Courant R, Hilbert D. Methods of Mathematical Physics. 1, Interscience, New York: 1953

    Google Scholar 

  27. Edmunds D E, Evans W D. Spectral theory and differential operators. Oxford 1987

  28. Chen H, Sleeman B D. Estimates for the remainder term in the asymptotics of the counting function for domains with irregular boundaries. Rend Sem Mat Univ Pol Torino, Italy in press

  29. Grosswald E. Representations of integers as sums of squares. New York: Springer-Verlag, 1988

    Google Scholar 

  30. Van den Berg M. Dirichlet-Neumann bracketing for horn-shaped regions. J Functional Analysis, 1992, 104: 110–120

    Article  Google Scholar 

  31. Van den Berg M. On the spectral counting function for the Dirichlet Laplacian. J Functional Analysis, 1992, 107: 352–361

    Article  Google Scholar 

  32. Van den Berg M, Lianantonakis M. Two-term asymptotics for the counting function for some planar hornshaped regions, Preprint 1995

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the Natural Science Foundation of China-and the Royal Society of London

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, C., Sleeman, B.D. Counting function asymptotics and the weak Weyl-Berry conjecture for connected domains with fractal boundaries. Acta Mathematica Sinica 14, 261–276 (1998). https://doi.org/10.1007/BF02560212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02560212

Keywords

1991MR Subject Classification

Chinese Library Classification

Navigation