Skip to main content
Log in

Logistic character of myocardial twitch force curve: Simulation

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

We found that the isovolumic pressure-time curve of the canine left ventricle closely fitted the difference of two logistic function curves and that the isovolumic relaxation-pressure curve segment was more reliably characterized by a logistic time constant than by the conventional exponential time constant. We therefore hypothesized that the calcium (Ca) transient and the Ca-troponin (Tn) binding and crossbridge (CB) kinetics underlay the logistic character of the ventricular isovolumic pressure curve. We tested this hypothesis with a computer simulation of a simple Ca and CB kinetics model of myocardial isometric twitch force development. We assumed the isometric force curve (F) to be proportional to the instantaneous number of attached CBs that was theoretically given as the difference between the cumulative CB attachment and detachment curves. We radically changed the Ca transient, Ca-Tn binding, and CB kinetic parameters. We always found that both the cumulative CB attachment and detachment curves closely fitted logistic functions. The difference curve of these two best-fit logistic functions closely fitted the theoretical F curve with certain combinations of the Ca transient, the Ca-Tn binding, and the CB kinetic parameters. These results seem to support our hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matsubara H, Araki J, Takaki M, Nakagawa ST, Suga H (1995) Logistic characterization of left ventricular isovolumic pressure-time curve. Jpn J Physiol 45:535–552.

    Article  PubMed  CAS  Google Scholar 

  2. Nwasokwa ON, Bodenheimer AM (1989) Analysis of myocardial isometric dynamics using parameters of a global model. Am J Physiol 257:H1210-H1521.

    Google Scholar 

  3. Sunagawa K, Yamada A, Senda Y, Kikuchi Y, Nakamura M, Shibata T, Nose Y (1980) Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans Biomed Eng 27:299–305.

    Article  PubMed  CAS  Google Scholar 

  4. Matsubara H, Takaki M, Yasuhara S, Araki J, Suga H (1995) Logistic time constant of isovolumic relaxation pressure-time curve in the canine left ventricle: Better alternative to exponential time constant. Circulation 92:2318–2326.

    PubMed  CAS  Google Scholar 

  5. Rubinow SI (1975) Introduction to mathematical biology. John Wiley and Sons. New York, pp 11–17.

    Google Scholar 

  6. Yamaguchi H, Takaki M, Matsubara H, Yasuhara S, Suga H (1996) Constancy and variability of contractile efficiency as a function of calcium and crossbridge kinetics: Simulation. Am J Physiol 270:H1501-H1508.

    PubMed  CAS  Google Scholar 

  7. Taylor TW, Goto Y, Suga H (1993) Variable cross-bridge cycling-ATP coupling accounts for cardiac mechanoenergetics. Am J Physiol 264:H994-H1004.

    PubMed  CAS  Google Scholar 

  8. Namba T, Takaki M, Araki J, Ishioka K, Akashi T, Zhao LY, Matsushita T, Ito H, Fujii W, Matsubara H, Suga H (1993) Ca2+ sensitivity of contractile machinery and Ca2+ handling energy: Simulation. Jpn Heart J 34:601–616.

    PubMed  CAS  Google Scholar 

  9. Suga H, Goto Y, Futaki S, Kawaguchi O, Yaku H, Hata K, Takasago T (1991) Cacium kinetics and energetics in myocardium: Simulation study. Jpn Heart J 32:57–67.

    PubMed  CAS  Google Scholar 

  10. Robertson SP, Johnson JD, Potter JD (1981) The time course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increase in Ca2+. Biophys J 34:559–569.

    PubMed  CAS  Google Scholar 

  11. Warber KD, Potter JD (1986) Contractile proteins and phosphorylation. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds). The heart and cardiovascular system. Raven, New York, pp 779–788.

    Google Scholar 

  12. Burkhoff D (1994) Explaning load dependence of ventricular contractile properties with a model of excitation-contraction coupling. J Mol Cell Cardiol 26:959–978.

    Article  PubMed  CAS  Google Scholar 

  13. Suga H, Taylor TW (1991) Myocardial efficiency and economy in Huxley's 1957 crossbridge model. Jpn Heart J 32:827–834.

    PubMed  CAS  Google Scholar 

  14. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:257–318.

    Google Scholar 

  15. Woledge RC, Curtin NA, Homsher E (1985) Energetic aspects of muscle contraction. Academic, London, pp 277–308.

    Google Scholar 

  16. Brenner B (1988) Effect of Ca2+ on crossbridge turnover kinetics in skinned single rabbit psoas fibres: Implications for regulation of muscle contraction. Proc Natl Acad Sci USA 85:3265–3269.

    Article  PubMed  CAS  Google Scholar 

  17. Lee JA, Allen DG (1991) EMD 53998 sensitizes the contractile proteins to calcium in intact ferret ventricular muscle. Circ Res 69:927–936.

    PubMed  CAS  Google Scholar 

  18. Peterson JN, Hunter WC, Berman MR (1991) Estimated time course of Ca2+ bound to troponin C during relaxation in isolated cardiac muscle. Am J Physiol 260:H1013-H1024.

    PubMed  CAS  Google Scholar 

  19. Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol (Lond) 116:497–506.

    CAS  Google Scholar 

  20. Ishikawa N, Kallman CH, Sagawa K (1984) Rabbit carotid sinus reflex under pentobarbital, urethane, and chloralose anesthesia. Am J Physiol 246:H696-H701.

    PubMed  CAS  Google Scholar 

  21. Kent BB, Drane JW, Blumenstein B, Manning JW (1972) A mathematical model to assess changes in the baroreceptor reflex. Cardiology 57:295–310.

    PubMed  CAS  Google Scholar 

  22. Sipido KR, Wier WG (1991) Flux of Ca2+ across the sarcoplasmic reticulum of guinea-pig cardiac cells during excitation-contraction coupling. J Physiol (Lond) 435: 605–630.

    CAS  Google Scholar 

  23. Weidmann S (1955) The effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol (Lond) 129:568–582.

    CAS  Google Scholar 

  24. Fujino K, Sperlakis N, Solaro RJ (1988) Sensitization of dog and guinea pig heart myofilaments to Ca2+ activation and the inotropic effects of pimobendan: Comparison with milrinone. Circ Res 63:911–922.

    PubMed  CAS  Google Scholar 

  25. Yasumura Y, Suga H (1988) Crossbridge model compatible with the linear relation between left ventricular oxygen consumption and pressure-volume area. Jpn Heart J 29:335–347.

    PubMed  CAS  Google Scholar 

  26. Solaro RJ (1995) Troponin C-troponin I interactions and molecular signalling in cardiac myofilaments. Adv Exp Med Biol 382:109–115.

    PubMed  CAS  Google Scholar 

  27. Dobrunz LE, Backx PH, Yue DT (1995) Steady-state [Ca2+]i-force relationship in intact twitching cardiac muscle: Direct evidence for modulation by isoproterenol and EMD 53998. Biophys J 69:189–201.

    Article  PubMed  CAS  Google Scholar 

  28. Landesberg A, Sideman S (1994) Mechanical regulation of cardiac muscle by coupling calcium kinetics with crossbridge cycling: A dynamic model. Am J Physiol 267:H779–795.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, T., Matsubara, H., Hata, Y. et al. Logistic character of myocardial twitch force curve: Simulation. Heart Vessels 11, 171–179 (1996). https://doi.org/10.1007/BF02559989

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02559989

Key Words

Navigation