Skip to main content
Log in

Kinematic formulas for finite lattices

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

In analogy to valuation characterizations and kinematic formulas of convex geometry, we develop a combinatorial theory of invariant valuations and kinematic formulas for finite lattices. Combinatorial kinematic formulas are shown to have application to some probabilistic questions, leading in turn to polynomial identities for Möbius functions and Whitney numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Blaschke, Vorlesungen über Integralgeometrie, 3rd Ed., VEB Deutsch. Verlag d. Wiss., Berlin, 1955. (Also: First Edition Part 1, 1935; Part II, 1937).

    MATH  Google Scholar 

  2. W.Y.C. Chen and G.-C. Rota,q-Analogs of the inclusion-exclusion principle, Discrete Math.104 (1992) 7–22.

    Article  MathSciNet  MATH  Google Scholar 

  3. S.S. Chern, On the kinematic formula in the euclidean space ofn dimensions, Amer. J. Math.74 (1952) 227–236.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.H.G. Fu, Kinematic formulas in integral geometry, Indiana Univ. Math. J.39 (1990) 1115–1154.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Glasauer, Translative and kinematic integral formulae concerning the convex hull operation, Math. Z. (to appear).

  6. J. Goldman and G.-C. Rota, On the fondations of combinatorial theory. IV. Finite vector spaces and Eulerian generating functions, Studies in Appl. Math.47 (1970) 239–258.

    MathSciNet  Google Scholar 

  7. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche, und Isoperimetrie, Springer Verlag, Berlin, 1957.

    MATH  Google Scholar 

  8. R. Howard, The kinematic formula in Riemannian homogeneous spaces, Memoirs of the A.M.S.509 (1993).

  9. D. Klain, A short proof of Hadwiger's characterization theorem, Mathematika42 (1995) 329–339.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Klain, Kinematic formulas for finite vector spaces Discrete Math. (to appear).

  11. D. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge University Press, New York, 1997.

    MATH  Google Scholar 

  12. J. Kung, Ed., Gian-Carlo Rota on Combinatorics: Introductory Papers and Commentaries, Birkhäuser Verlag, Boston, 1995.

    Google Scholar 

  13. P. McMullen, Non-linear angle-sum relations for polyhedral cones and polytopes, Math. Proc. Camb. Phil. Soc.78 (1975) 247–261.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. McMullen, Valuations and dissections, In: Handbook of Convex Geometry, Peter M. Gruber and Jörg M. Wills, Eds., North-Holland, Amsterdam, 1993, pp. 933–988.

    Google Scholar 

  15. P. McMullen and R. Schneider, Valuations on convex bodies, In: Convexity and its Applications, Peter M. Gruber and Jörg M. Wills, Eds., Birkhäuser Verlag, Boston, 1983, pp. 170–247.

    Google Scholar 

  16. N. Metropolis and G.-C. Rota, Combinatorial structure of the faces of then-cube, SIAM J. Appl. Math.35 (1978) 689–694.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Metropolis, G.-C. Rota, V. Strehl, and N. White, Partitions into chains of a class of partially ordered sets, Proc. Amer. Math. Soc.71 (1978) 193–196.

    Article  MathSciNet  MATH  Google Scholar 

  18. G.-C. Rota, On the foundations of combinatorial theory, I: Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie 2368 (1964) 340–368.

    Article  MathSciNet  Google Scholar 

  19. G.-C. Rota, On the combinatorics of the Euler characteristic, Studies in Pure Math., (Papers Presented to Richard Rado) Academic Press, London, 1971, pp. 221–233.

    Google Scholar 

  20. G.-C. Rota, Introduction to Geometric Probability, Lezioni Lincee held at the Scuola Normale Superiore Pisa, December 2–22, 1986.

  21. L.A. Santaló, Integral Geometry and Geometric Probability, Reading, Addison-Wesley, MA, 1976.

    Google Scholar 

  22. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Unviesity Press, New York, 1993.

    MATH  Google Scholar 

  23. R. Schneider and J.A. Wieacker, Integral geometry, In: Handbook of Convex Geometry, Peter M. Gruber and Jörg M. Wills, Eds., North-Holland, Amsterdam, 1993, pp. 1349–1390.

    Google Scholar 

  24. R. Stanley, Enumerative Combinatorics, Wadsworth & Brooks/Cole Advanced Books and Software, Monterey, Calif., 1986.

    Book  MATH  Google Scholar 

  25. J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, New York, 1992.

    MATH  Google Scholar 

  26. W. Weil, Kinematic integral formulas for convex bodies, In: Contributions to Geometry, Proc. Geometry Symp., Siegen, 1978, J. Tölke and Jörg M. Wills, Eds., Birkhäuser Verlag, Boston, 1978, pp. 60–76.

    Google Scholar 

  27. G. Zhang, Dual kinematic formulas, Trans. Amer. Math. Soc. (to appear).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by NSF grant #DMS 9626688.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klain, D.A. Kinematic formulas for finite lattices. Annals of Combinatorics 1, 353–366 (1997). https://doi.org/10.1007/BF02558486

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02558486

AMS Subject Classification

Keywords

Navigation