Skip to main content
Log in

Mayer-series asymptotic catastrophe in classical statistical mechanics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The problem of an asymptotic catastrophe related to calculating Mayer series coefficients is discussed. The mean squared error of the Monte Carlo estimate for the coefficient of an nth power of a variable tends to infinity catastrophically fast as n increases if we use the standard representation for coefficients of a Mayer series and forbid the rapid growth of the calculation volume. In contrast, if we represent these coefficients as tree sums, the error vanishes as n increases. We precisely define the notion of a powerseries asymptotic catastrophe that improves the description introduced by Ivanchik. For a nonnegative potential that rapidly decreases at infinity and has a hard core, the standard, representation of mayer coefficients results in the asymptotic catatrophe both in the sense of our approach and in the sense of Ivanchik. Virial coefficients are represented as polynomials in tree sums. These representations resolve the asymptotic catastrophe problem for the case of virial expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ruelle,Statistical Mechanics: Rigorous Results, Benjamin, New York (1969).

    MATH  Google Scholar 

  2. J. Mayer and M. Goeppert Mayer,Statistical Mechanics, Wiley, New York (1940).

    MATH  Google Scholar 

  3. G. I. Kalmykov,Theor. Math. Phys.,84, 869 (1990).

    Article  MathSciNet  Google Scholar 

  4. G. E. Uhlenbeck and G. W. Ford,Lectures in Statistical Mechanics (Lectures in Applied Mathematics. Proc. Summer Seminar, Boulder, Colorado, 1960, Vol. 1)], Amer. Math. Soc., Providence, RI (1963).

    MATH  Google Scholar 

  5. D. N. Zubarev,Sov. Phys. Dokl.,3, 126 (1958).

    MATH  ADS  Google Scholar 

  6. F. Harary,Graph Theory, Addison-Wesley, Reading, Mass. (1969).

    Google Scholar 

  7. I. I. Ivanchik, “Method of covariant summation of diagrams in classical statistics,” Doctoral dissertation Lebedev Physical Institute, USSR Acad. Sci., Moscow (1987); I. I. Ivanchik,Generalized Mayer Series in Classical Statistical Mechanics, Nova Science, New York (1993).

    Google Scholar 

  8. I. I. Ivanchik,Theor. Math. Phys.,108, 958 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  9. O. Penrose,J. Math. Phys.,4, 1488 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Groeneveld,Phys. Lett.,3, No. 1, 50 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. G. I. Kalmykov,Diskretnaya Matematika,4, No. 2, 66 (1992).

    MATH  MathSciNet  Google Scholar 

  12. I. S. Gradshtein and I. M. Ryzhik,Tables of Integrals, Series, and Products [in Russian], Gos. Izd. Fiz.-Mat. Lit., Moscow (1962); English transl., Acad. Press, New York (1969).

    Google Scholar 

  13. M. Hall,Combinatorial Theory, Blaisdell Waltham, Mass. (1967).

    MATH  Google Scholar 

  14. G. I. Kalmykov,Theor. Math. Phys.,92, 790 (1992).

    Article  MathSciNet  Google Scholar 

  15. G. I. Kalmykov,Theor. Math. Phys.,116, 1063 (1998).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, vol. 119, No. 3, pp. 475–497, June, 1999. Original

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalmykov, G.I. Mayer-series asymptotic catastrophe in classical statistical mechanics. Theor Math Phys 119, 778–795 (1999). https://doi.org/10.1007/BF02557387

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02557387

Keywords

Navigation