Skip to main content
Log in

Transmission electron microscopy of lattice planes in human alveolar bone apatite crystals

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Periodic fringes corresponding to six different lattice planes have been observed in apatite crystals of human normal alveolar bone by transmission electron microscopy. Three of these sets of fringes have spacings less than 3.5 Å corresponding to the Scherzer resolution of the microscope used. The (0002) lattice plane of hydroxyapatite of 3.4 Å d-spacings, the\(\left( {21\bar 11} \right)\) lattice plane with a d-spacing of 2.81 Å, and the\(\left( {30\bar 30} \right)\) lattice plane with a d-spacing of 2.72 Å have been identified. The (0002) and\(\left( {21\bar 21} \right)\) lattice planes have been observed for the first time in bone microcrystals. Some of the crystals studied were characterized by a mean width/thickness ratio of 6.91, typical of platelike habit, whereas observations of crystals aligned along the\(\left\langle {1\bar 210} \right\rangle \) and\(\left\langle {1\bar 211} \right\rangle \) directions showed a needlelike habit. The mean length of the bone apatite crystals was 470 Å. A dark line similar to the one observed in enamel and dentine crystals was also seen. The bone microcrystals observed have shown a high sensitivity to beam damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Posner AS, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acct Chem Res 8:273–281

    Article  CAS  Google Scholar 

  2. De Jong WF (1926) La substance minérale dans les os. Recl Trav Chim Pays-Bas 45:445–448

    Google Scholar 

  3. Carlström D, Glas JE (1959) The size and shape of the apatite crystallites in bone as determined from line broadening measurements on oriented specimens. Biochim Biophys Acta 35:46–53

    Article  PubMed  Google Scholar 

  4. Matsushima N, Akiyama M, Terayama Y, Izumi Y, Miyake Y (1984) The morphology of bone mineral as revealed by small-angle X-ray scattering. Biochim Biophys Acta 801:298–305

    PubMed  CAS  Google Scholar 

  5. Robinson RA, Watson ML (1955) Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann NY Acad Sci 60:596–628

    Article  PubMed  CAS  Google Scholar 

  6. Wolpers C (1949) Elektronenmikroscopie der Plasma-Derivate. Grenzg Med 2:527–529

    Google Scholar 

  7. Johansen E, Parks HF (1960) Electron microscopy of the three-dimensional morphology of apatite crystallites of human dentine and bone. J Biophys Biochem Cytol 7:743–745

    Article  PubMed  CAS  Google Scholar 

  8. Jackson SA, Cartwright AG, Lewis D (1978) The morphology of bone mineral crystals. Calcif Tissue Res 25:215–222

    Article  Google Scholar 

  9. Voegel J-C, Frank RM (1977) Ultrastructural study of apatite crystal dissolution in human dentine and bone. J Biol Buccale 5:181–194

    PubMed  CAS  Google Scholar 

  10. Selvig KA (1970) Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif Tissue Res 6:227–238

    Article  PubMed  CAS  Google Scholar 

  11. Selvig KA (1975) Resolution of the hydroxyapatite crystal lattice in bone and dental enamel by electron microscopy. In: Montel G (ed) Physico-chimie des apatites d'intérêt biologique. Editions du Centre National de la Recherche Scientifique. Paris, pp 41–50

    Google Scholar 

  12. Lees S (1979) A model for the distribution of HAP crystallites in bone—a hypothesis. Calcif Tissue Int 27:53–56

    Article  PubMed  CAS  Google Scholar 

  13. Rönnholm E (1962) The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. J Ultrastruct Res 6:249–303

    Article  PubMed  Google Scholar 

  14. Nakahara H (1982) Electron microscopic studies of the lattice image and “central dark line” of crystallites in sound and carious human dentine. Bull Josai Dent Univ 11:209–515

    CAS  Google Scholar 

  15. Spence JCH (1980) Experimental high-resolution electron microscopy. Oxford University Press, Oxford

    Google Scholar 

  16. Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  PubMed  CAS  Google Scholar 

  17. Hirsch PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals. Krieger Publishing Company, Malabar, Florida

    Google Scholar 

  18. Nagakura S, Nakamura Y, Suzuki T (1982) Forbidden reflection intensity in electron diffraction and its influence on the crystal structure image. Japn J Appl Phys 21:L449-L451

    Article  Google Scholar 

  19. Smith DJ, Bursill LA, Wood GJ (1985) Non-anomalous high resolution imaging of crystalline materials. Ultramicroscopy 16:19–32

    Article  CAS  Google Scholar 

  20. Burton WK, Cabrera N, Frank FC (1951) The growth of crystals and the equilibrium structure of their surfaces. Phil Trans R Soc Lond A243:299–304

    Google Scholar 

  21. Langdon D, Dykes E, Fearnhead RW (1975) Defects diffusion and dissolution in biological apatites. In: Montel G (ed) Physico-chimie et cristallographie des apatites d'intérêt biologique, Editions du Centre National de la Recherche Scientifique, Paris, pp 381–388

    Google Scholar 

  22. Buerger M (1978) Elementary crystallography: an introduction to the fundamental features of crystals. MIT Press, Cambridge Mass

    Google Scholar 

  23. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci USA 82:4110–4114

    Article  PubMed  CAS  Google Scholar 

  24. Williams RJP (1984) An introduction to biominerals and the role of organic molecules in their formation. Phil Trans R Soc Lond B304:411–424

    CAS  Google Scholar 

  25. Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  PubMed  CAS  Google Scholar 

  26. Koutsoukos PG, Nancollas GH (1981) The morphology of the hydroxyapatite crystals grown in aqueous solutions at 37°C. J Cryst Growth 55:369–375

    Article  CAS  Google Scholar 

  27. Brown WE (1962) Octacalcium phosphate and hydroxyapatite. Nature 196:1048–1055

    Article  CAS  Google Scholar 

  28. Gai PL, Goringe MJ, Barry JC (1986) HREM image contrast from supported small metal particles. J Microsc 142:9–24

    CAS  Google Scholar 

  29. Nelson DGA, McLean JD (1984) Direct observation of near atomic details in synthetic and biological apatite crystallites. In: Fearnhead RW, Suga S (eds) Tooth enamel IV. Elsevier, Amsterdam, pp 47–51

    Google Scholar 

  30. Nelson DGA, Wood GJ, Barry JC, Featherstone JDB (1986) The structure of (100) defects in carbonated apatite crystallites: a high resolution electron microscope study. Ultramicroscopy 19:253–266

    Article  PubMed  CAS  Google Scholar 

  31. Brès EF, Waddington WG, Voegel J-C, Barry JC, Frank RM (1986) Theoretical detection of a dark contrast line in twinned apatite bicrystals and its possible correlation with the chemical properties of human dentin and enamel crystals. Biophys J 50:1185–1193

    Article  PubMed  Google Scholar 

  32. Brès EF, Barry JC, Hutchinson JL (1984) A structural basis for the carious dissolution of the apatite crystals of human tooth enamel. Ultramicroscopy 12:367–372

    Article  Google Scholar 

  33. Anderson S, Hyde BG (1974) Twinning on the unit cell level as a structure building operation in the solid state. J Solid State Chem 9:92–101

    Article  Google Scholar 

  34. Cherns D, Hutchinson JL, Jenkins M, Hirsch PB (1980) Electron irradiation-induced vitrification. Nature 287:314–316

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuisinier, F., Bres, E.F., Hemmerle, J. et al. Transmission electron microscopy of lattice planes in human alveolar bone apatite crystals. Calcif Tissue Int 40, 332–338 (1987). https://doi.org/10.1007/BF02556695

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556695

Key words

Navigation