Skip to main content

Advertisement

Log in

Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The aim of the investigation was to measure the effect of fluoride on vertebral trabecular bone compressive strength and to correlate this with fluoride-induced changes in bone density. This correlation would express changes in the quality of bone during fluoride treatment. Pigs were used in the experiment because their trabecular bone structure and remodeling sequences are very similar to the human. Eight animals receiving a supplement of 2 mg F/kg b.w. per day from age 8–14 months were compared with 8 control animals. Morphologic measurements in the animals receiving fluoride supplement showed a significant increase of 17% in bone density and a smaller, insignificant increase of 3% in ash weight analyses. Meanwhile, the mechanical parameters for the fluorotic animals were unchanged (maximum compressive strength, maximum stiffness, and energy-absorption capacity) or decreased (normalized compressive strength=maximum compressive load corrected for ash density). It is concluded that the increased bone mass during the initial stages of fluoride treatment does not necessarily indicate an improved bone quality. The discrepancy between bone mass and strength could be either a permanent or a temporary phenomenon and requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charles P, Mosekilde L, Taagehøj Jensen F (1985) The effects of sodium fluoride, calcium phosphate, and vitamin D2 for one to two years on calcium and phosphorous metabolism in postmenopausal women with spinal crush fracture osteoporosis. Bone 6:201–206

    Article  PubMed  CAS  Google Scholar 

  2. Jowsey J, Riggs BL, Kelly PJ, Hoffman DL (1972) Effect of combined therapy with sodium fluoride, vitamin D and calcium in osteoporosis. Am J Med 53:43–49

    Article  PubMed  CAS  Google Scholar 

  3. Briancon D, Meunier PJ (1981) Treatment of osteoporosis with fluoride, calcium, and vitamin-D. Orthop Clin North Am 12:629–48

    PubMed  CAS  Google Scholar 

  4. Bernstein DS, Cohen P (1967) Use of sodium fluoride in the treatment of osteoporsis. J Clin Endocrinol Metab 27:197–210

    Article  PubMed  CAS  Google Scholar 

  5. Riggs BL, Hodgson SF, Hoffman DL, Kelly PJ, Johnson KA, Taves D (1980) Treatment of primary osteoporosis with fluoride and calcium. Clinical tolerance and fracture occurrence. JAMA 243:446–449

    Article  PubMed  CAS  Google Scholar 

  6. Parfitt AM (1982) Treatment of osteoporosis: theoretical possibilities. Clin Invest Med 5:181–183

    PubMed  CAS  Google Scholar 

  7. Parfitt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest 72:1396–1409

    PubMed  CAS  Google Scholar 

  8. Kanis JA (1984) Treatment of osteoporotic fracture. Lancet 1:27–33

    Article  PubMed  CAS  Google Scholar 

  9. Kanis JA, Meunier PJ (1984) Should we use fluoride to treat osteoporosis? A review. Q J Med 53:210:145–164

    PubMed  CAS  Google Scholar 

  10. Sharma YD (1982) Effect of sodium fluoride on collagen cross-link precursors. Toxicol Lett 10:97–100

    Article  PubMed  CAS  Google Scholar 

  11. Sharma YD (1982) Variations in the metabolism and maturation of collagen after fluoride ingestion. Biochem Biophys Acta 715:137–141

    PubMed  CAS  Google Scholar 

  12. Gron P, McCann HG, Bernstein D (1966) Effect of fluoride on human osteoporotic bone mineral. J Bone Joint Surg 48A:892–898

    Google Scholar 

  13. Posner AS (1967) Relationship between diet and bone mineral ultrastructure. Fed Proc 26:6:1717–1722

    PubMed  CAS  Google Scholar 

  14. Kragstrup J, Richards A, Fejerskov O (1984) Experimental osteo-fluorosis in the domestic pig. A histomorphometric study of vertebral trabecular bone. J Dent Res 63:6:885–889

    PubMed  CAS  Google Scholar 

  15. Saville PD (1967) Water fluoridation: effect on bone fragility and skeletal calcium content in the rat. J Nutr 91:353–357

    PubMed  CAS  Google Scholar 

  16. Nordenberg D, Simkin A, Gedalia I, Robin G (1971) The effect of sodium fluoride and sodium monofluorophosphate on the mechanical properties of normal and osteoporotic rat bone. Isr J Med Sci 7:529–531

    PubMed  CAS  Google Scholar 

  17. Wolinsky I, Simkin A, Guggenheim K (1972) Effects of fluoride on metabolism and mechanical properties of rat bone. Am J Physiol 223:46–50

    PubMed  CAS  Google Scholar 

  18. Chan MM, Rucker RB, Zeman F, Riggins RS (1973) Effects of fluoride on bone formation and strength in Japanese quail. J Nutr 103:1431–1440

    PubMed  CAS  Google Scholar 

  19. Riggins RS, Zeman F, Moon D (1974) The effects of sodium fluoride on bone breaking strength. Calcif Tissue Res 14:283–289

    Article  PubMed  CAS  Google Scholar 

  20. Riggins RS, Rucker RC, Chan MM, Zeman F, Beljan JR (1976) The effect of fluoride supplementation on the strength of osteopenic bone. Clin Orthop 114:352–357

    PubMed  CAS  Google Scholar 

  21. Mosekilde Li, Viidik A, Mosekilde Le (1985) Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals. Bone 6:291–295

    Article  PubMed  CAS  Google Scholar 

  22. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59-A:7:954–962

    Google Scholar 

  23. Stein ID, Granik G (1980) Human vertebral bone: relation of strength, porosity and mineralization to fluoride content. Calcif Tissue Int 32:189–194

    Article  PubMed  CAS  Google Scholar 

  24. Henrikson P, Lutwak L, Krook L, Skogerboe R, Kallfelz F, Belanger LF, Marier JR, Sheffy BE, Romanus B, Hirsch C (1970) Fluoride and nutritional osteoporosis: physicochemical data on bones from an experimental study in dogs. J Nutr 100:631–642

    PubMed  CAS  Google Scholar 

  25. Oxlund H, Andreassen TT (1980) The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues. J Anat 131:4:611–620

    PubMed  CAS  Google Scholar 

  26. Lucas PA, Ophaug RH, Singer L (1984) The effect of vitamin A deficiency and fluoride on glycosaminoglycan metabolism in bone. Connect Tissue Res 13:17–26

    Article  PubMed  CAS  Google Scholar 

  27. Faccini JM (1969) Fluoride and bone. Calcif Tissue Res 3:1–16

    Article  PubMed  CAS  Google Scholar 

  28. Inkovaara J, Heikinheimo R, Jarvinen K, Kasurinen U, Hanhijarvi H, Iisalo E (1975) Prophylactic fluoride treatment and aged bones. Br Med J 3:73–74

    Article  PubMed  CAS  Google Scholar 

  29. Riggs BL, Seeman E, Hodgson SF, Taves DR, O'Fallon WM (1982) Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis. Comparison with conventional therapy. N Engl J Med 306:446–450

    Article  PubMed  CAS  Google Scholar 

  30. Parsons V, Mitchell CJ, Reeve J, Hesp R (1977) The use of sodium fluoride, vitamin D and calcium supplements in treatment of patients with axial osteoporosis. Calcif Tissue Res 22(Suppl):236–240

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosekilde, L., Kragstrup, J. & Richards, A. Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcif Tissue Int 40, 318–322 (1987). https://doi.org/10.1007/BF02556693

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556693

Key words

Navigation