Skip to main content
Log in

Different trends of age-related diminution of bone mineral content in the lumbar spine, femoral neck, and femoral shaft in women

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The bone mineral content (BMC) was measured by dual photon absorptiometry of153Gd simultaneously in the lumbar spine, femoral neck, and femoral shaft in a cross-sectional study of 113 healthy women aged 20–89 years. The measurements suggest differences in the patterns of bone mineral decrease at the three sites of the skeleton in relation to age. The lumbar spine BMC decreases mainly during the usual time of menopause, whereas BMC decreases linearly in the femoral neck from young adulthood to old age. The femoral shaft BMC is nearly unaltered until the seventh decade, and thereafter BMC declines significantly. In each of the three age groups selected according to the usual time for menopause there was significant correlations between BMC of the scanning sites and nearly identical variance of BMC with age, suggesting homogeneity in the female population with regard to rate of bone diminution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avioli LV (ed) (1983) The osteoporotic syndrome. Grune and Stratton, New York

    Google Scholar 

  2. Newton-John HF, Morgan DB (1970) The loss of bone with age, osteoporosis, and fractures. Clin Orthop 71:229–252

    PubMed  CAS  Google Scholar 

  3. Mazess RB (1982) On aging bone loss. Clin Orthop 165:239–251

    PubMed  Google Scholar 

  4. Risk factors in postmenopausal osteoporosis [Editorial] Lancet i:1370–1372

  5. Riggs BL, Melton III LJ (1986) Involutional osteoporosis. N Engl J Med 314:1676–1686

    Article  PubMed  CAS  Google Scholar 

  6. Cohn SH, Dombrowski CS, Fairchild RG (1970) In vivo neutron analysis of calcium in man. Int J Appl Radiart Isot 21:127–137

    Article  CAS  Google Scholar 

  7. McNeill KG, Harrison JE (1977) Measurement of the axial skeleton for diagnosis of osteoporosis by neutron activation analysis. J Nucl Med 18:1136–1137

    PubMed  CAS  Google Scholar 

  8. Genant HK, Boyd DP (1977) Quantitative bone mineral analysis using dual-energy computed tomography. Invest Radiol 12:545–551

    Article  PubMed  CAS  Google Scholar 

  9. Mazess RB, Ort M, Judy P, Mather W (1970) Absorptiometric bone mineral determination using153Gd. In: Cameron JR (ed) Proc, Bone Measurement Conf. U.S. Atomic Energy Commission Conference 700515, pp 308–312

  10. Roos BO (1974) Dual photon absorptiometry in lumbar vertebrae [Thesis]. University of Gothenburg

  11. Schaadt O, Bohr H (1982) Bone mineral by dual photon absorptiometry. Accuracy, precision, sites of measurements. In: Dequeker J, Johnston CC Jr (eds) Non-invasive bone measurements: methodological problems. IRL Press, Oxford, pp 59–72

    Google Scholar 

  12. Schaadt O, Bohr H (1980) Skeletal metabolism. Lancet ii:914

    Article  Google Scholar 

  13. Krølner B, Pors Nielsen S, Lund B, Lund Bj, Sørensen OH, Uhrenholdt A (1980) Measurement of the bone mineral content (BMC) of the lumbar spine, II. Correlation between forearm BMC and lumbar spine BMC. Scand J Clin Lab Invest 40:665–670

    PubMed  Google Scholar 

  14. Richardson ML, Genant HK, Cann CE, Ettinger B, Gordon GS, Kolb FO, Reiser UJ (1985) Assessment of metabolic bone diseases by quantitative computed tomography. Clin Orthop 195:224–238

    PubMed  Google Scholar 

  15. Horsman A, Burkinshaw L, Pearson D, Oxby CB, Milner RM (1983) Estimating total body calcium from peripheral bone measurements. Calcif Tissue Int 35:135–144

    Article  PubMed  CAS  Google Scholar 

  16. Dalen N, Jacobson B (1974) Bone mineral assay: choice of measuring sites. Invest Radiol 9:174–185

    Article  PubMed  CAS  Google Scholar 

  17. Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ (1982) Changes in bone mineral density of the proximal femur and spine with aging. J Clin Invest 70:716–723

    PubMed  CAS  Google Scholar 

  18. Schaadt O, Bohr H (1982) Loss of bone mineral in axial and peripheral skeleton in aging, prednisone treatment and osteoporosis. In: Dequeker J, Johnston CC Jr (eds) Non-invasive bone measurements: methodological problems. IRL PRESS, Oxford, pp 207–214

    Google Scholar 

  19. Bohr H, Schaadt O (1983) Bone mineral content of femoral bone and the lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry. Clin Orthop 179:240–245

    PubMed  Google Scholar 

  20. Pocock NA, Eisman JA, Yeates MG, Sambrook PN, Eberl S (1986) Physical fitness is a major determinant of femoral neck and lumbar spine bone mineral density. J Clin Invest 78:618–621

    Article  PubMed  CAS  Google Scholar 

  21. Bohr H, Schaadt O (1985) Bone mineral content of the femoral neck and shaft: relation between cortical and trabecular bone. Calcif Tissue Int 37:340–344

    PubMed  CAS  Google Scholar 

  22. Armitage P (1977) Statistical methods in medical research. Blackwell Scientific Publications, Oxford

    Google Scholar 

  23. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  24. Richelson LW, Wahner HW, Melton LJ III, Riggs BL (1984) Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med 311:1773–1775

    Article  Google Scholar 

  25. Lindquist O, Bengtsson C, Hansson T, Roos B (1981) Bone mineral content in relation to age and menopause in middleaged women. Scand J Clin Lab Invest 42:333–338

    Google Scholar 

  26. Hansson T, Roos B (1986) Age changes in the bone mineral of the lumbar spine in normal women. Calcif Tissue Int 38:249–251

    Article  PubMed  CAS  Google Scholar 

  27. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6:1–7

    Article  PubMed  CAS  Google Scholar 

  28. Geusen P, Dequeker J, Verstraeten A, Nijs J (1986) Age-, sex-, and menopause-related changes of vertebral and peripheral bone: population study using dual and single photon absorptiometry and radiogrammetry. J Nucl Med 27:1540–1549

    Google Scholar 

  29. Talmage RV, Stinnett SS, Landwehr JT, Vincent LM, McCartney WH, (1986) Age-related loss of bone mineral density in non-athletic and athletic women. Bone and Mineral 1:115–125

    PubMed  CAS  Google Scholar 

  30. Sabatier JP, Héron JF, Petiot JF, Sabatier N, Dronne JJ (1982) Clinical usefulness of a bone mineral measurement method on the femoral shaft. Calcif Tissue Int 34:21–28

    Article  PubMed  CAS  Google Scholar 

  31. Bauer GCH (1960) Epidemiology of fractures in aged persons. A preliminary investigation in fracture etiology. Clin Orthop 17:219–225

    Google Scholar 

  32. Gallagher JC, Melton LJ, Riggs BL, Bergstrath E (1980) Epidemiology of fractures of the proximal femur in Rochester. Clin Orthop 150:163–171

    PubMed  Google Scholar 

  33. Bohr H, Biering-Sørenson F, Kjærulff H, Schaadt O (1986) Measurements of bone mineral content in patients with spinal cord injuries. Acta Orthop Scand 57:2:184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaadt, O., Bohr, H. Different trends of age-related diminution of bone mineral content in the lumbar spine, femoral neck, and femoral shaft in women. Calcif Tissue Int 42, 71–76 (1988). https://doi.org/10.1007/BF02556337

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556337

Key words

Navigation