Skip to main content

Advertisement

Log in

The carbohydrate moiety of mineral-bound proteins from fetal enamel: A basis for enamelins heterogeneity

  • Molecular and Cellular Biology
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Enamelins were prepared from the soft enamel of bovine fetuses. They were purified on synthetic hydroxyapatite and separated in two fractions by affinity chromatography on a ConA-ultrogel column. The two fractions were different with respect to their electrophoretic behavior, stainability, amino acid composition, phosphorylation, and glycosylation. The ConA-binding fraction, consisting of three molecular species with apparent molecular weights of 33, 37, and 45 kD, contained organic phosphorus and high levels of sugars. The Gal/Man ratio suggested a biantennary structure. The ConA-unbound fraction contained two major molecular species with molecular weights of 70 and 56 kD, and represented 70% of the total enamelin preparation. The amino acid composition of this fraction showed a higher level of alanine and a lower level of proline when compared with that of total enamelins. Its sugar composition was unusual, being principally constituted of N-acetyl galactosamine and N-acetyl glucosamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Termine JD, Belcourt AB, Christner PJ, Conn KM, Nylen MU (1980) Properties of dissociatively extracted fetal tooth matrix proteins. I. Principal molecular species in developing bovine enamel. J Biol Chem 255:9760–9768

    PubMed  CAS  Google Scholar 

  2. Shimokawa H, Wassmer P, Sobel ME, Termine JD (1984) Characterization of cell-free translation products of m-RNA from bovine ameloblasts by monoclonal and polyclonal antibodies. In: Fernhead RW, Suga S (eds) Tooth enamel, Vol 4. Elsevier, North-Holland, Amsterdam, pp 161–166

    Google Scholar 

  3. Zeichner-David M, Mac Dougall M, Slavkin HC (1983) Enamelin gene expression during fetal and neonatal rabbit tooth organogenesis. Differentiation 25:148–155

    Article  PubMed  CAS  Google Scholar 

  4. Rosenbloom J, Lally E, Dixon M, Spencer A, Herold R (1986) Production of a monoclonal antibody to enamelins which does not cross-react with amelogenins. Calcif Tissue Int 39:412–415

    PubMed  CAS  Google Scholar 

  5. Hayashi Y, Bianco P, Shimokawa H, Termine JD, Bonucci E (1986) Organic-inorganic relationships and immuno histochemical localization of amelogenins and enamelins in developing enamal. Bas Appl Histochem 30:291–299

    CAS  Google Scholar 

  6. Seyer JM, Glimcher MJ (1977) Evidence for the presence of numerous protein components in immature bovine dental enamel. Calcif Tissue Res 24:253–257

    Article  PubMed  CAS  Google Scholar 

  7. Robinson C, Lowe NR, Weatherell JA (1977) Changes in amino-acid composition of developing rat incisor enamel. Calcif Tissue Res 23:19–31

    Article  PubMed  CAS  Google Scholar 

  8. Fincham AG, Belcourt AB, Lyaruu DM, Termine JD (1982) Comparative protein biochemistry of developing dental enamel matrix from five mammalian species. Calcif Tissue Int 34:182–189

    Article  PubMed  CAS  Google Scholar 

  9. Fincham AG, Belcourt AB, Termine JD (1982) Changing patterns of enamel matrix proteins in the developing bovine tooth. Caries Res 16:64–71

    Article  PubMed  CAS  Google Scholar 

  10. Deutsch D, Shapira L, Alayof D, Leviel D, Yoeli Z, Arad A (1984) Protein and mineral changes during prenatal and postnatal development. In: Fernhead RW, Suga S (eds) Tooth enamel. Vol. 4. Elsevier, North-Holland, Amsterdam, pp 234–239

    Google Scholar 

  11. Menanteau J, Mitre D, Raher S (1986) An in-vitro study of enamel protein degradation in developing bovine enamel. Archs Oral Biol 31:807–810

    Article  CAS  Google Scholar 

  12. Limeback H (1987) Isolation and characterization of pig enamelins. Biochem J 243:385–390

    PubMed  CAS  Google Scholar 

  13. Robinson C, Lowe NR, Weatherell JA (1975) Aminoacid composition, distribution and origin of “tuft” protein in human and bovine dental enamel. Archs Oral Biol 20:29–42

    Article  CAS  Google Scholar 

  14. Belcourt AB, Fincham AG, Termine JD (1982) Ethylene diamine tetraacetic acid insoluble protein of adult human enamel. Caries Res 16:72–76

    PubMed  CAS  Google Scholar 

  15. Glimcher MJ, Levine PT (1966) Studies of the proteins peptides and free amino-acids of mature bovine enamel. Biochem J 98:742–753

    PubMed  CAS  Google Scholar 

  16. Burgess RC, Nikiforuk G, Maclaren C (1960) Chromatographic studies of carbohydrate components in enamel. Archs Oral Biol 3:8–14

    Article  CAS  Google Scholar 

  17. Clark RD, Smith JG Jr, Davidson EA (1965) Hexosamine and acid glycosaminoglycans in human teeth. Biochim Biophys Acta 101:267–272

    PubMed  CAS  Google Scholar 

  18. Seyer J, Glimcher MJ (1969) The content and nature of the carbohydrate components of the organic matrix of embryonic bovine enamel. Biochim Biophys Acta 184:509–522

    PubMed  CAS  Google Scholar 

  19. Elwood WK, Apostolopoulos AX (1975) Analysis of developing enamel of the rat. III. Carbohydrate, DEAE-Sephadex and immunological studies. Calcif Tissue Res 17:337–347

    Article  PubMed  CAS  Google Scholar 

  20. Merrill CR, Goldman D, Sedman SA, Ebert MH (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438

    Article  Google Scholar 

  21. Towbin H, Staehlin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some application. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  22. Zanetta JP, Breckenridge WC, Vincendon G (1972) Analysis of monosaccharides by gas-liquid chromatography of O-methyl glycosides as trifluoroacetate derivatives. Application to glycoproteins and glycolipids. J Chrom 69:291–304

    Article  CAS  Google Scholar 

  23. Chen PS, Toribara TY, Warner H (1972) Microdetermination of phosphate. Anal Chem 28:1756–1759

    Article  Google Scholar 

  24. Fisher LW, Whitson SW, Avioli LV, Termine JD (1983) Matrix sialoprotein of developing bone. J Biol Chem 258:12723–12727

    PubMed  CAS  Google Scholar 

  25. Smith AJ 91984) Histochemistry of enamel. In: Belcourt AB. Ruch JV (eds) Coll Inserm 125, Paris, pp 307–314

  26. Nakai M, Tatemoto Y, Mori H, Mori M (1985) Lectin binding patterns in the developing tooth. Histochemistry 83:455–463

    Article  PubMed  CAS  Google Scholar 

  27. Goldberg M, Septier D (1986) Ultrastructural location of complex carbohydrates in developing rat incisor enamel. Anat Rec 216:181–190

    Article  PubMed  CAS  Google Scholar 

  28. Weinstock A, Leblond CP (1971) Elaboration of the matrix glycoprotein of enamel by the secretory ameloblasts of the rat incisor as revealed by radioautoradiography after galactose-3H injection. J Cell Biol 51:26–51

    Article  PubMed  CAS  Google Scholar 

  29. Mechanic GL, Katz EP, Glimcher MJ (1967) The sephadex gel filtration characteristics of the neutral soluble proteins of embryonic bovine enamel. Biochim Biophys Acta 133:97–113

    PubMed  CAS  Google Scholar 

  30. Robinson C, Kirkham J (1985) Dynamics of amelogenesis as revealed by protein compositional studies. In: Butler WT (ed) The chemistry and biology of mineralized tissues. Ebsco Media, Birmingham (Ala), pp 248–263

    Google Scholar 

  31. Green ED, Van Halbeek H, Boime I, Baenziger JU (1985) Structural elucidation of the disulfated oligosaccharide from bovine lutropin. J Biol Chem 260:15623–15630

    PubMed  CAS  Google Scholar 

  32. Fukuda M, Spooncer E, Oates JE, Dell A, Klock JC (1984) Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J Biol Chem 259:10925–10935

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menanteau, J., Meflah, K. & Strecker, G. The carbohydrate moiety of mineral-bound proteins from fetal enamel: A basis for enamelins heterogeneity. Calcif Tissue Int 42, 196–200 (1988). https://doi.org/10.1007/BF02556334

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556334

Key words

Navigation