Skip to main content
Log in

Calcium and protein kinase C enhance parathyroid hormone- and forskolin-stimulated adenylate cyclase in ROS 17/2.8 cells

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Both parathyroid hormone (PTH)- and forskolin-stimulated adenylate cyclase activities in ROS 17/2.8 cells are enhanced by increasing the medium concentrations of CaCl2 from 10−5 M to 3 ×10−3 M. The ED50 for CaCl2 for both PTH- and forskolin-stimulated activities are similar. The tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, also enhanced both PTH- and forskolin-stimulated adenylate cyclase. This action of PMA is specific for protein kinase C as phorbol esters that are not activators of protein kinase C had no effect on the system. The combined effects of PMA and CaCl2 were more than additive. The separate and combined effects of PMA and CaCl2 changed the rate of activation of the enzyme (Vmax) but did not modify the ED50 for PTH or for forskolin. PMA and CaCl2 both enhanced the potentiating effect of submaximal dose of forskolin on PTH-stimulated adenylate cyclase. It is concluded that calcium and PMA enhance PTH-sensitive adenylate cyclase and increase the production of cAMP by a mechanism that appears to involve the catalytic subunit of the enzyme and probably its interaction with a guanine nucleotide regulatory protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McSheehy PMJ (1986) Osteoblast-like cells in the presence of parathyroid hormone release soluble factor that stimulates osteoclastic bone resorption. Endocrinology 119: 1654–1659

    PubMed  CAS  Google Scholar 

  2. Rodan GA, Martin TJ (1981) The role of osteoblasts in hormonal control of bone resorption. Calcif Tissue Int 33: 349–351

    Article  PubMed  CAS  Google Scholar 

  3. Raisz LG, Rodan G (1987) Calcium regulation and bone metabolism. In: Martin TJ, Raisz LG (eds) Clinical endocrinology of calcium metablism. Marcel Dekker Inc, New York, pp 1–52

    Google Scholar 

  4. Martin TJ, Ng KW, Livesey SA, Partridge NC, Hamilton JA (1985) Effects of parathyroid hormone on bone. In: Butler WT (eds) The chemistry and biology of mineralized tissues. EBSCO Media, Birmingham, pp 311–316

    Google Scholar 

  5. Majeska RJ, Rodan GA (1982) Alkaline phosphatase inhibition by parathyroid hormone and isopreterenol in a clonal rat osteosarcoma cell line: possible mediation by cAMP. Calcif Tissue Int 32: 207–211

    Google Scholar 

  6. Rao LG, Murray TM (1985) Binding of intact parathyroid hormone to rat osteosarcoma cells: major contribution of binding sites for the carboxyl-terminal region of the hormone. Endocrinology 117: 1632–1638

    Article  PubMed  CAS  Google Scholar 

  7. Yee JA, Sutton JK, Shew RIM, Olansky YL (1986) Parathyroid hormone stimulation of alkaline phosphatase activity in cultured neonatal mouse calvarial bone cells: involvement of cyclic AMP and calcium. J Cell Physiol 128: 246–250

    Article  PubMed  CAS  Google Scholar 

  8. Hermann-Erlee APM, Van Der Meer JM, Lowik CWGM, vanLeeuwen JPTM, Boonerkamp PM (1988) Different roles for calcium and cyclic AMP in the action of PTH: studies in bone explants and isolated bone cells. Bone 9: 93–100

    Article  Google Scholar 

  9. Rao LG, March M, Murray TM (1986) Dual effects of cytosolic calcium on PTH-stimulated adenylate cyclase in clonal bone cell lines. In: Delmas PD, Meunier PJ, Cohn DV (eds) IX International Conference on Calcium-Regulating Hormones and Bone Metabolism, p 422

  10. Peck WA, Kohler G, Barr S (1981) Calcium-mediated enhancement of the cyclic AMP response in cultured bone cells. Celcif Tissue Int 33: 409–146

    Article  CAS  Google Scholar 

  11. Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233: 305–312

    Article  PubMed  CAS  Google Scholar 

  12. Sugden D, Ho AK, Sugden AL, Kelin DC (1988) Negative feedback mechanisms: evidence that desensitization of pineal alpha1-adrenergic responses involves protein kinase C. Endocrinology 123: 1425–1432

    PubMed  CAS  Google Scholar 

  13. Sibley RD, Strasser RH, Benovic JL, Daniel K, Lefkowitz RJ (1986) Phosphorylation/dephosphorylation of the alpha1-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution. Proc Natl Acad Sci (USA) 83: 9408–9412

    Article  CAS  Google Scholar 

  14. Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB (1985) Activation of protein kinase C potentiates isoprena-line-induced cyclic AMP accumulation in rat pinealocytes. Nature 314: 359–362

    Article  PubMed  CAS  Google Scholar 

  15. Bell JD, Boxton ILO, Brunton LL (1985) Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters: putative effect of C kinase on G8-GTP catalytic subunit interaction. J Biol Chem 260: 2625–2628

    PubMed  CAS  Google Scholar 

  16. Cronin MJ, Zysk JR, Baertschi AJ (1986) Protein kinase C potentiates corticotropin-releasing factor stimulated by cyclic AMP in pituitary. Peptides 7: 935–938

    Article  PubMed  CAS  Google Scholar 

  17. Pines M, Santora A, Soiegel A (1986) Effects of phorbol esters and pertussis toxin on agonist-stimulated cyclic AMP production in rat osteosarcoma cells. Biochem Pharmacol 35: 3639–3641

    Article  PubMed  CAS  Google Scholar 

  18. Aurbach GD, Potts Jr Jt (1964) Partition of parathyroid hormone on Sephadex G-100, Endocrinology 75–82

  19. Shimizu H, Daley JW, Creveling CE (1969) A radioisotopic method for measuring the formation of adenosine 3′5′-cyclic monophosphate in incubated slices of brain. J Neurochem 16: 1609–1619

    Article  PubMed  CAS  Google Scholar 

  20. Salomon Y, Londos C, Rodbell M (1974) A highly sensitive adenylate cyclase assay. Anal Chem 58: 541–548

    CAS  Google Scholar 

  21. Seamon KB, Daly JW (1968) Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide and Phosphorylation Res 20: 1–150

    Google Scholar 

  22. Seamon KB, Daly JW (1981) Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem 256: 9799–9801

    PubMed  CAS  Google Scholar 

  23. MacNeil S, Lakey T, Tomlinson S (1984) Calmodulin regulation of adenylate cyclase activity. Cell Calcium 6: 213–226

    Google Scholar 

  24. Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151: 431–437

    Article  PubMed  CAS  Google Scholar 

  25. Summers ST, Cronin MJ (1986) Phorbol esters enhance basal and stimulated adenylate cyclase activity in a pituitary cell line. Biochem Biophys Res Comm 135: 276–281

    Article  PubMed  CAS  Google Scholar 

  26. Sibley DR, Jeffs RA, Daniel JK, Nambi P, Lefkowitz RJ (1986) Phorbol diester treatment promotes enhanced adenylate cyclase activity in frog erythrocytes. Arch Biochem Biophys 244: 373–381

    Article  PubMed  CAS  Google Scholar 

  27. Lowik CWGM, van Leeuwen JPTM, van der Meer JM, van Zeeland JK, Scheven BAA, Herrmann-Erlee MPM (1985) A two-receptor model for the action of parathyroid hormone on osteoblasts: a role for intracellular free calcium and cAMP. Cell Calcium 6: 311–326

    Article  PubMed  CAS  Google Scholar 

  28. Reid IR, Civitelli R, Halstead R, Avioli LV, Hruska KA (1987) Parathyroid hormone acutely elevates intracellular calcium in osteoblastlike cells. Am J Physiol 252: E45-E51

    Google Scholar 

  29. Yamaguchi DT, Kleeman CR, Muallem S (1987) Protein kinase C-activated calcium channel in the osteoblast-like clonal osteosarcoma cell line UMR 106. J Biol Chem 262: 14967–14973

    PubMed  CAS  Google Scholar 

  30. Krug E, Tashjian AH Jr (1987) Time-dependent changes in protein kinase C distribution and disappearance in phorbol ester-treated human osteosarcoma cells. Cancer Res 47: 2243–2246

    PubMed  CAS  Google Scholar 

  31. Gopalakrishna R, Barsky SH, Thomas TP, Anderson WB (1986) Factors influencing chelator-stable, detergent-extractable, phorbol diester-induced membrane association of protein kinase C. J Biol Chem 261: 16438–16445

    PubMed  CAS  Google Scholar 

  32. Farrar WL, Anderson WB (1985) Interleukin-2 stimulates association of protein kinase C with plasma membrane. Nature (London) 315: 233–235

    Article  CAS  Google Scholar 

  33. Farndale RW, Sandy JR, Atkinson SJ, Pennington SR, Meghji S, Meikle MC (1988) Parathyroid hormone and prostaglandin E2 stimulate both inositol phosphate and cyclic AMP accumulation in mouse osteoblast cultures. Biochem J 252: 263–268

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, L.G., Murray, T.M. Calcium and protein kinase C enhance parathyroid hormone- and forskolin-stimulated adenylate cyclase in ROS 17/2.8 cells. Calcif Tissue Int 45, 354–359 (1989). https://doi.org/10.1007/BF02556006

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556006

Key words

Navigation