Skip to main content

Advertisement

Log in

Vertebral cortical bone mass measurement by a new quantitative computer tomography method: Correlations with vertebral trabecular bone measurements

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Previous studies comparing axial and appendicular skeleton have shown that trabecular bone loss is greater than cortical bone loss. However, whether the same difference exists between the trabecular and the cortical compartments of the vertebral body remains to be determined. In this study, we used quantitative computer tomography (QCT) to simultaneously measure the cortical rim of the vertebral body as well as trabecular bone. In 99 Caucasian women (mean age 53.8±13.0 years, range 26–79 years) we found a significant correlation between cortical mineral content (BMCc) and both single (SE) and dual energy (DE) trabecular mineral content (BMCT) (r=0.62,P<0.0001 for both regressions). The cross-sectional rates of bone loss per year were 1.32%, 1.16%, and 0.59% for SE-BMCT, DE-BMCT, and BMCC, respectively. BMCC decreased at a rate that was 45–51% that of SE-BMCT and DE-BMCT, respectively. Our results indicate that (1) QCT may provide a useful means to selectively measure cortical density in vertebral bodies; (2) the decrease of cortical density over time in the spine appears to have been underestimated previously by extrapolation from appendicular bone measurements; (3) because measurements of the entire vertebral body (exclusive of the posterior elements) may provide information that is more representative of spine changes with age, a measurement that includes both areas might be more useful than one measuring only the trabecular region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cameron JR, Mazess RB, Sorenson A (1968) Precision and accuracy of bone mineral determination by dual photon absorptiometry. Invest Radiol 3:141–150

    Article  PubMed  CAS  Google Scholar 

  2. Peppler WW, Mazess RB (1981) Total body bone mineral and lean body mass by dual photon absorptiometry. I. Theory and measurement procedure. Calcif Tissue Int 33:353–359

    Article  PubMed  CAS  Google Scholar 

  3. Sartoris DJ, Resnick D (1989) Dual energy radiographic absorptiometry for bone densitometry: current status and perspective. AJR 152:241–246

    PubMed  CAS  Google Scholar 

  4. Pacifici R, Rupich R, Vered I, Fischer KC, Griffin M, Susman N, Avioli LV (1988) Dual energy radiography (DER): a preliminary comparative study. Calcif Tissue Int 43:189–191

    PubMed  CAS  Google Scholar 

  5. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM (1988) Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 67:839–844

    PubMed  CAS  Google Scholar 

  6. Chamberlain M, Fremlin JH, Peters DK, Philip H (1968) Total body calcium by whole body neutron activation analysis: a new technique for study of bone disease. Br Med J ii:581–583

    Article  Google Scholar 

  7. Nelp WB, Palmer HE, Murano R, Pailthorp K, Hinn GM, Rich C, Williams JL, Rudd TG, Denney JD (1970) Measurement of total body calcium (bone mass) in vivo with the use of total body neutron activation analysis. J Lab Clin Med 76:151–162

    PubMed  CAS  Google Scholar 

  8. Cann CE, Genant HK (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4:493–500

    Article  PubMed  CAS  Google Scholar 

  9. Banks LM, Stevenson JC (1986) Modified method of spinal computed tomography for trabecular bone mineral measurement. J Comput Assist Tomogr 10:463–467

    Article  PubMed  CAS  Google Scholar 

  10. Genant HK, Boyd DP (1977) Quantitative bone mineral analysis using dual-energy computed tomography. Invest Radiol 12:545–551

    Article  PubMed  CAS  Google Scholar 

  11. Rosenthal DI, Ganott MA, Wyshak G, Slovik DM, Doppelt SH, Neer RM (1985) Quantitative computed tomography for spinal density measurement: factors affecting precision. Invest Radiol 20:306–310

    Article  PubMed  CAS  Google Scholar 

  12. Riggs BL, Wahner HW, Dunn, WL, Offord KP, Melton JL (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67:328–335

    Article  PubMed  CAS  Google Scholar 

  13. Nordin BEC (1971) Clinical significance and pathogenesis of osteoporosis. Br Med J 1:571–576

    PubMed  CAS  Google Scholar 

  14. Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97:699–705

    PubMed  CAS  Google Scholar 

  15. Richardson ML, Genant HK, Cann CE, Ettinger B, Gordon GS, Kolb FO, Reiser UJ (1985) Assessment of metabolic bone diseases by quantitative computed tomography. Clin Orthop 195:224–238

    PubMed  Google Scholar 

  16. Newton-John HF, Morgan DB (1970) The loss of bone with age, osteoporosis and fractures. Clin Orthop 71:229–252

    PubMed  CAS  Google Scholar 

  17. Mazess RB (1982) On aging bone loss. Clin Orthop 162:239–252

    Google Scholar 

  18. Cann CE, Genant HK, Young DR (1980) Comparison of vertebral and peripheral mineral losses in disuse osteoporosis in monkeys. Radiology 134:525–529

    PubMed  CAS  Google Scholar 

  19. Meier DE, Orwoll ES, Jones JM (1984) Marked disparity between trabecular and cortical bone loss with age in men. Measurement by vertebral computed tomography and radial photon absorptiometry. Ann Int Med 101:605–612

    PubMed  CAS  Google Scholar 

  20. Reinbold WD, Genant HK, Reiser UJ, Harris ST, Ettinger B (1986) Bone mineral content in early postmenopausal and postmenopausal osteoporotic women: comparison of measurement methods. Radiology 160:469–478

    PubMed  CAS  Google Scholar 

  21. Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J (1989) Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 9:75–80

    PubMed  CAS  Google Scholar 

  22. Jones CD, Jeantet-Laval AM, Jeantet-Laval MH, Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8:201–207

    Article  PubMed  CAS  Google Scholar 

  23. Ott SM, Kilcoyne RF, Chesnut III CH (1988) Comparisons among methods of measuring bone mass and relationship to severity of vertebral fractures in osteoporosis. J Clin Endocrinol Metab 66:501–507

    PubMed  CAS  Google Scholar 

  24. Pacifici R, Susman N, Carr PL, Birge SJ, Aviodi LV (1987) Single and dual energy tomographic analysis of spinal trabecular bone: a comparative study in normal and osteoporotic women. J Clin Endocrinol Metab 64:209–214

    Article  PubMed  CAS  Google Scholar 

  25. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6:1–7

    Article  PubMed  CAS  Google Scholar 

  26. Faul DD, Couch JL, Cann CE, Boyd DP, Genant HK (1982) Composition-selective reconstruction for mineral content in the axial and appendicular skeleton. J Comput Assist Tomog 6:202–208

    Article  Google Scholar 

  27. Genant HK, Boyd DP, Rosenfeld A, Abols Y, Cann CE (1987) Computed tomography. In: Cohn SH (ed) Noninvasive measurements of bone mass and their clinical applications. CRC Press, New York, p 121

    Google Scholar 

  28. Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. Pathol Bacteriol 94:275–291

    Article  CAS  Google Scholar 

  29. Frost HM (1973) Bone remodeling and its relationship to metabolic bone disease. Charles C. Thomas, Springfield, MA

    Google Scholar 

  30. Keshawarz NM, Recker RR (1984) Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab Bone Dis Rel Res 5:223–228

    Article  CAS  Google Scholar 

  31. Nottestad SY, Baumel JJ, Kimmel DB, Recker RR, Heaney RP (1987) The proportion of trabecular bone in human vertebrae. J Bone Min Res 2:221–229

    Article  CAS  Google Scholar 

  32. Ott SM, Kilcoyne RF, Chesnut CH (1986) Longitudinal changes in bone mass after one year as measured by different techniques in patient with osteoporosis. Calcif Tissue Int 39:133–138

    PubMed  CAS  Google Scholar 

  33. Ettinger B, Genant HK, Cann CF (1987) Postmenopausal bone loss is prevented by treatment with low-dosage estrogen with calcium. Ann Int Med 106:40–45

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacifici, R., Rupich, R.C. & Avioli, L.V. Vertebral cortical bone mass measurement by a new quantitative computer tomography method: Correlations with vertebral trabecular bone measurements. Calcif Tissue Int 47, 215–220 (1990). https://doi.org/10.1007/BF02555922

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555922

Key words

Navigation