Skip to main content

Advertisement

Log in

Enhanced suppression of 1,25(OH)2D3 and intact parathyroid hormone in Graves' disease as compared to toxic nodular goiter

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

1,25(OH)2D3, 25OHD3, and intact parathyroid hormone, as well as various parameters of calcium-phosphorus metabolism were measured in 38 patients with Graves' disease (GD) and in 24 patients with toxic nodular goiter (TNG). Plasma 1,25(OH)2D3 levels were lower in GD patients (82 ±29 pmol/liter) than in those with TNG (155±32 pmol/liter) (P<0.0005). The mean value of 1,25(OH)2D3 in 45 controls was intermediate between the two groups of patients (140±41) and the difference was statistically significant. GD patients before and after treatment had higher alkaline phosphatase (P<0.05), lower intact parathyroid hormone (PTH) (P<0.05), and lower 1,25(OH)2D3 levels (P<0.0005 in the hyperthyroid andP<0.01 in the euthyroid state) than TNG patients. We conclude that increased skeletal calcium resorption is due to elevated levels of T3 causing suppression of 1,25(OH)2D3 production and of PTH levels in both groups of patients albeit of different degrees. Furthermore, we postulate that the profound suppression of 1,25(OH)2D3 in GD is secondary to an immune-mediated phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burman KD, Monchik JM, Earll JM, Wartowsky L (1976) Ionized and total serum calcium and parathyroid hormone in hyperthyroidism. Ann Intern Med 84:668–671

    PubMed  CAS  Google Scholar 

  2. Mosekilde L, Christensen MS (1977) Decreased parathyroid function in hyperthyroidism: interrelationships between serum parathyroid hormone, calcium-phosphorus metabolism and thyroid function. Acta Endocrinol (Copenh) 84:566–575

    CAS  Google Scholar 

  3. Cooper DS, Kaplan MM, Ridgway EC, Maloof F, Daniels GH (1979) Alkaline phosphatase isoenzyme patterns in hyperthyroidism. Ann Intern Med 90:164–168

    PubMed  CAS  Google Scholar 

  4. Rhone DP, Berlinger FG, White FM (1980) Tissue sources of elevated serum alkaline phosphatase activity in hyperthyroid patients. Am J Clin Pathol 74:381–386

    PubMed  CAS  Google Scholar 

  5. Siersbaek-Nielsen K, Skovsted L, Hansen JM, Kristensen M, Christensen LK (1971) Hydroxyproline excretion in the urine and calcium metabolism during long-term treatment of thyrotoxicosis with propylthiouracil. Acta Med Scand 189:485–488

    Article  PubMed  CAS  Google Scholar 

  6. Fontaine G, Eisinger J-B, Conte-Devolx B, Codaccioni J-L (1977) Anomalies du metabolism calcique dans les hyperthyroidies. Nouv Presse med 6:2499–2502

    PubMed  CAS  Google Scholar 

  7. Bouillon R, Muls E, DeMoor P (1980) Influence of thyroid function on the serum concentration of 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab 51:793–797

    PubMed  CAS  Google Scholar 

  8. Jastrup B, Mosekilde L, Melsen F, Lund BI, Lund BJ, Sørensen OH (1982) Serum levels of vitamin D metabolites and bone remodelling in hyperthyroidism. Metabolism 31:126–132

    Article  PubMed  CAS  Google Scholar 

  9. MacFarlane A, Mawer EB, Berry J, Hann J (1982) Vitamin D metabolism in hyperthyroidism. Clin Endocrinol (Oxf) 17:51–59

    CAS  Google Scholar 

  10. Wiedemann J, Schmidt-Gayk H, Pietsch V, Mayer E (1982) Rationelle Sätigungsanalyse zur Bestimmung des Vitamin-D-Status (25-hydroxylierte Vitamin-D-Metaboliten) aus kleinen Serummengen. Lab Med 6:222–224

    Google Scholar 

  11. Scharla S, Schmidt-Gayk H, Reichel H, Mayer E (1984) A sensitive and simplified radioimmunoassay for 1,25-dihydroxyvitamin D3. Clin Chim Acta 142:325–338

    Article  PubMed  CAS  Google Scholar 

  12. Blum M, Goldman AB, Herskovic A, Hernberg J (1972) Clinical application of thyroid echography. N Engl J Med 287:1164–1169

    Article  PubMed  CAS  Google Scholar 

  13. Mori T, Kriss JP (1972) Measurements by competitive binding radioassay of serum anti-microsomal and anti-thyroglobulin antibodies in Graves' disease and other thyroid disorders. J Clin Endocrinol Metab 33:688–698

    Google Scholar 

  14. Attwood EC (1979) The T3/TBG ratio and the biochemical investigation of thyrotoxicosis. Clin Biochem 12(3):88–92

    Article  PubMed  CAS  Google Scholar 

  15. Pickardt CR, Bauer M, Horn K, Kubiczek TT, Scriba PC (1977) Vorteile der direkten Bestimmung des Thyroxin-bindenden Globulins (TBG) in der Schilddrusenfunktiondiagnostik. Internist 18:538–543

    PubMed  CAS  Google Scholar 

  16. Lindall AW, Elting J, Ells J, Roos BA (1983) Estimation of biologically active intact parathyroid hormone in normal and hyperthyroid sera by sequential N-terminal immunoextraction and midregion radioimmunoassay. J Clin Endocrinol Metab 57:1007–1014

    PubMed  CAS  Google Scholar 

  17. Tanaka Y, DeLuca HF (1973) The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 154:566–574

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka Y, DeLuca HF (1984) Rat renal 25-hydroxyvitamin D3 1- and 24-hydroxylases: their in vivo regulation. Am J Physiol 246:E168-E173

    PubMed  CAS  Google Scholar 

  19. Kano K, Jones G (1984) Direct in vitro effect of thyroid hormones on 25-hydroxyvitamin D3 metabolism in the perfused rat kidney. Endocrinology 114:330–336

    PubMed  CAS  Google Scholar 

  20. Mundy GR, Shapiro JL, Bandelin JG, Canalis EM, Raisz LG (1976) Direct stimulation of bone resorption by thyroid hormones. J Clin Invest 58:529–534

    Article  PubMed  CAS  Google Scholar 

  21. Silver J, Russell J, Sherwood LM (1985) Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci USA 82:4270–4273

    Article  PubMed  CAS  Google Scholar 

  22. Strakosch CR, Wenzel BE, Row VV, Volpé R (1982) Immunology of autoimmune thyroid diseases. N Engl J Med 307:1499–1507

    Article  PubMed  CAS  Google Scholar 

  23. Chan JYC, Walfisch PG (1986) Activated (Ia+) T-lymphocytes and their subsets in autoimmune thyroid diseases: analysis by dual laser flow microfluorocytometry. J Clin Endocrinol Metab 62:403–409

    PubMed  CAS  Google Scholar 

  24. Lamki L, Row VV, Volpé R (1973) Cell-mediated immunity in Graves' disease and in Hashimoto's thyroiditis as shown by the demonstration of migration inhibition factor (MIF). J Clin Endocrinol Metab 36:358–364

    PubMed  CAS  Google Scholar 

  25. Manolagas SG, Deftos LJ (1984) The vitamin D endocrine system and the hematolymphopoietic tissue. Ann Intern Med 100:144–146

    PubMed  CAS  Google Scholar 

  26. Singhelakis P, Alevizaki CC, Ikkos DG (1974) Intestinal calcium absorption in hyperthyroidism. Metabolism 23:311–321

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto I, Kitamura N, Aoki J, Kawamura J, Dokoh S, Morita R, Torizuka K (1987) Circulating 1,25-dihydroxyvitamin D concentrations in patients with renal cell carcinoma-associated hypercalcemia are rarely suppressed. J Clin Endocrinol Metab 64:175–179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czernobilsky, H., Scharla, S., Schmidt-Gayk, H. et al. Enhanced suppression of 1,25(OH)2D3 and intact parathyroid hormone in Graves' disease as compared to toxic nodular goiter. Calcif Tissue Int 42, 5–12 (1988). https://doi.org/10.1007/BF02555832

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555832

Key words

Navigation