Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics

Summary

The aims of this study were (1) to determine at the crystal level, the nonspecific biological fate of different types of calcium phosphate (Ca−P) ceramics after implantation in various sites (osseous and nonosseous) in animals and (2) to investigate the crystallographic association of newly formed apatitic crystals with the Ca−P ceramics.

Noncommercial Ca−P ceramics identified by X-ray diffraction as calcium hydroxylapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphates (BCP) (consisting of β-TCP/HA=40/60) were implanted under the skin in connective tissue, in femoral lamellar cortical bone, articular spine bone, and cortical mandibular and mastoidal bones of animals (mice, rabbits, beagle dogs) for 3 weeks to 11 months. In humans, HA or β-TCP granules were used to fill periodontal pockets, and biposies of the implanted materials were recovered after 2 and 12 months.

Results of this study demonstrated the following: (1) the presence of needle-like microcrystals (new crystals) associated with the Ca−P ceraiic macrocrystals in the microporous regions of the implants regardless of the sites of implantation (osseous or nonosseous), type of Ca−P ceramics (HA, β-TCP, BCP), type of species used (mice, rabbits, dogs, humans), or duration of implantation; (2) decrease in the area occupied by the ceramic crystals and the subsequent filling of the spaces between the ceramic crystals by the new crystals; (3) these new crystals were identified as apatite by electron diffraction and as carbonate-apatite by infrared absorption spectroscopy; (4) high resolution transmission electron microscopy (Hr TEM) revealed one family of apatite lattice fringes in the new crystals in continuity with the lattice planes of the HA of β-TCP ceramic crystals; (5) Hr TEM also demonstrated the presence of linear dislocations at the junction of the new apatite crystals and ceramic crystals.

It is suggested that the formation of the CO3 apatite crystals associated with the implanted Ca−P ceramic is due to dissolution/precipitation and secondary nucleation involving an epitatic growing process and not to an osteogenic property of the ceramic.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278

    PubMed  CAS  Google Scholar 

  2. 2.

    De Groot K (1983) Bioceramics of calcium phosphate. CRC Press, Boca Raton, Florida

    Google Scholar 

  3. 3.

    Metsger DS, Driskell TD, Paulstrud JR (1982) Calcium phosphate ceramic, a resorbable bone implant: review and current status. J Am Dent Assoc 105:1035–1038

    PubMed  CAS  Google Scholar 

  4. 4.

    Van Reamdonck W, Ducheyne P, De Meester P (1984) Calcium phosphate ceramics. In: Ducheyne P, Hastings G (eds) Metals and ceramic biomaterials. CRC Press, Boca Raton, Florida, pp 144–166

    Google Scholar 

  5. 5.

    LeGeros RZ (1988) Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res 2:164–180

    PubMed  CAS  Google Scholar 

  6. 6.

    Nery EB, Lynch KL (1978) Preliminary clinical studies of bioceramic in periodontal osseous defects. J Periodont 49:523–527

    PubMed  CAS  Google Scholar 

  7. 7.

    Daculsi G (1988) Biological properties of calcium phosphate biomaterials. In: Babighian G, Veldman JE, Portman M, Zini C (eds) Transplants and implants in otology, Kugler and Ghedini Publications, Amsterdam, 227–230

    Google Scholar 

  8. 8.

    Daculsi G, LeGeos RZ, Heughebaert M, Jans I (1988) Biological apatites associated with calcium phosphate ceramics implanted in osseous and non-osseous sites. J Dent Res 67:370

    Google Scholar 

  9. 9.

    Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (in press) Transformation of biphasic calcium phosphate ceramics in vivo. Ultrastructural and physico-chemical characterization. J Biomed Mat Res

  10. 10.

    Frank RM, Gineste M, Benque EP, Hemmerle J, Duffort JF, Heughebaert M (1987) Etude ultrastructurale de l'induction osseuse apres implantation de bioapatities chez l'homme. J Biol Buccale 15:125–134

    PubMed  CAS  Google Scholar 

  11. 11.

    Heughebaert M, LeGeros RZ, Gineste M, Guilhem A (1988) Hydroxyapatite (HA) ceramics implanted in non-bone-forming sites. Physico-chemical characterization. J Biomed Mat Res 22:257–268

    Article  CAS  Google Scholar 

  12. 12.

    Jarcho M, Kay JF, Drobeck HP, Doremus RH (1976) Tissue, cellular and subcellular events at bone-ceramic hydroxylapatile interface. J Bioeng 1:79–92

    Google Scholar 

  13. 13.

    Tracy BM, Doremus RH (1984) Direct electron microscopy studies of the bone hydroxylapatite interface. J Biomed Mater Res 18:719–726

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Heughebaert M, Daculsi G, Heughebeert JC, D'Yvoire F (1986) Calcium aluminum phosphate for biological appllications. In: Christel P, Meunier A, Lee AJC (eds) Biological and biomechanical performance of biomaterials. Elsevier Science Publishers, BV, Amsterdam, pp 33–38

    Google Scholar 

  15. 15.

    LeGeros RZ (1986) Variability of β-TCP/HA ratios in sintered “apatites”. J Dent Res 65:292

    Google Scholar 

  16. 16.

    Daculsi G, Kerebel B, Verbaere A (1978) Methode de mesure des cristaux d'apatite de la dentine humaine en microscopie electronique de haute resolution. C R Acad Sci Paris 286:1439–1441

    CAS  Google Scholar 

  17. 17.

    Kerebel B, Daculsi G, Verbaere A (1976) Ultrastructural and crystallographic study of biological apatites. J Ultrastruct Res 57:266–275

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    LeGeros RZ, LeGeros JP, Trautz OR, Klein E (1970) Spectral properties of carbonate in carbonate containing apatites. Dev Appl Spec 7B:3–12

    Google Scholar 

  19. 19.

    Osborn JF, Newesely H (1980) The material science of calcium phosphate ceramic. Biomaterials 1:108–111

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Ducheyne P (1987) Bioceramics: material characteristic versus in vivo behavior. J Biomed Mater Res 21:219–236

    PubMed  CAS  Google Scholar 

  21. 21.

    Ganeles J, Listgarten MA, Evian CI (1986) Ultrastructure of durapatite periodontal tissue interface in human intrabony defects. J Periodontol 57:133–140

    PubMed  CAS  Google Scholar 

  22. 22.

    Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141

    Article  Google Scholar 

  23. 23.

    Gross U, Schumacher D, Strunz V (1983) Comparative studies on the tissue reaction after implantation of glass ceramic into human, pig, rat, chicken bones. In: Vincenzine P (ed) Ceramics in surgery, pp. 161–168

  24. 24.

    Gregoire M, Orly I, Kerebel LM, Kerebel B (1987) In vitro effects of calcium phosphate biomaterials on fibroblastic cell behavior. Cell Biol 59:255–260

    CAS  Google Scholar 

  25. 25.

    LeGeros RZ, Parsons R, Daculsi G, Diressens F, Lee D, Metsger S (1988) Biodegradation/bioresorption of calcium phosphate ceramics: task group report. In: Ducheyne P, Lemons J (eds) Bioceramics: material characterization vs. in vivo behavior, Ann NY Acad Sci 523:268–291

  26. 26.

    Cameron HU, Macnab I, Pilliar RM (1977) Evaluation of a biodegradable ceramic implant. J Biomed Mater Res 11:179–181

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Daculsi G, Orly I, Gregoire M, Heughebaert M, Hartmann DJ, Kerebel B (1986) Cell interactions with mixed calcium phosphate (TCP and HA) and alumina solid phase: an ultrastructural study. In: Advances in biomaterials: biological and biomechanical performances of biomaterials, vol IV. ESV Publishers, Amsterdam, pp 337–342

    Google Scholar 

  28. 28.

    Daculsi G, Hartmann DJ, Heughebaert M, Hamel L, Le Nihouannen JC (1988) In vivo cell interactions with calcium phosphate. J Submicroscop Cytol 20:379–384

    CAS  Google Scholar 

  29. 29.

    Klein CPAT, Driessen AA, De Groot K (1984) Relationship between the degradation behavior of calcium phosphate ceramics and their physical chemical characteristics and ultrastructural geometry. Biomaterials 5:157–160

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Osborn JF, Donath K (1984) Die ensale implantation von hydroxylapatite keramik und tricalciumphosphatkeramik: integration vs substitution. Deutsch Zahn Zeit 39:970–976

    CAS  Google Scholar 

  31. 31.

    LeGeros RZ, Orly I, Gregoire M, Abergas T, Kazimiroff J (1987) Physico-chemical properties of calcium phosphate biomaterials used as bone substitutes. Trans 13th Ann Meeting Biomaterials (abstract 84)

  32. 32.

    Renooij W, Hoogendoorm A, Visser WJ, Lentferink RHF, Lentferink MGJ, Van Leperen H, Oldenburg SJ, Janssen WM, Akkermans LMA, Wittebol P (1985) Bioresorption of ceramic strontium 85-labeled calcium phosphate implants in dog femora. A pilot study to quantitate bioresorption of cermic implants of hydroxylapatite and tricalcium orthophosphate in vivo. Clin Orthop Rel Res 197:272–285

    Google Scholar 

  33. 33.

    Amler MH (1987) Osteogenic potential of non-vital tissues and synthetic implant materials. J Periodont 58:758–761

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dr. R. Z. LeGeros or M. Heughebaert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Daculsi, G., LeGeros, R.Z., Heughebaert, M. et al. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 46, 20–27 (1990). https://doi.org/10.1007/BF02555820

Download citation

Key words

  • Calcium phosphate
  • Ceramic
  • Biomaterial
  • Biocompatibility
  • Mineralization
  • Apatite