Advertisement

Calcified Tissue International

, Volume 46, Issue 1, pp 20–27 | Cite as

Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics

  • G. Daculsi
  • R. Z. LeGeros
  • M. Heughebaert
  • I. Barbieux
Laboratory Investigations

Summary

The aims of this study were (1) to determine at the crystal level, the nonspecific biological fate of different types of calcium phosphate (Ca−P) ceramics after implantation in various sites (osseous and nonosseous) in animals and (2) to investigate the crystallographic association of newly formed apatitic crystals with the Ca−P ceramics.

Noncommercial Ca−P ceramics identified by X-ray diffraction as calcium hydroxylapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphates (BCP) (consisting of β-TCP/HA=40/60) were implanted under the skin in connective tissue, in femoral lamellar cortical bone, articular spine bone, and cortical mandibular and mastoidal bones of animals (mice, rabbits, beagle dogs) for 3 weeks to 11 months. In humans, HA or β-TCP granules were used to fill periodontal pockets, and biposies of the implanted materials were recovered after 2 and 12 months.

Results of this study demonstrated the following: (1) the presence of needle-like microcrystals (new crystals) associated with the Ca−P ceraiic macrocrystals in the microporous regions of the implants regardless of the sites of implantation (osseous or nonosseous), type of Ca−P ceramics (HA, β-TCP, BCP), type of species used (mice, rabbits, dogs, humans), or duration of implantation; (2) decrease in the area occupied by the ceramic crystals and the subsequent filling of the spaces between the ceramic crystals by the new crystals; (3) these new crystals were identified as apatite by electron diffraction and as carbonate-apatite by infrared absorption spectroscopy; (4) high resolution transmission electron microscopy (Hr TEM) revealed one family of apatite lattice fringes in the new crystals in continuity with the lattice planes of the HA of β-TCP ceramic crystals; (5) Hr TEM also demonstrated the presence of linear dislocations at the junction of the new apatite crystals and ceramic crystals.

It is suggested that the formation of the CO3 apatite crystals associated with the implanted Ca−P ceramic is due to dissolution/precipitation and secondary nucleation involving an epitatic growing process and not to an osteogenic property of the ceramic.

Key words

Calcium phosphate Ceramic Biomaterial Biocompatibility Mineralization Apatite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278PubMedGoogle Scholar
  2. 2.
    De Groot K (1983) Bioceramics of calcium phosphate. CRC Press, Boca Raton, FloridaGoogle Scholar
  3. 3.
    Metsger DS, Driskell TD, Paulstrud JR (1982) Calcium phosphate ceramic, a resorbable bone implant: review and current status. J Am Dent Assoc 105:1035–1038PubMedGoogle Scholar
  4. 4.
    Van Reamdonck W, Ducheyne P, De Meester P (1984) Calcium phosphate ceramics. In: Ducheyne P, Hastings G (eds) Metals and ceramic biomaterials. CRC Press, Boca Raton, Florida, pp 144–166Google Scholar
  5. 5.
    LeGeros RZ (1988) Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res 2:164–180PubMedGoogle Scholar
  6. 6.
    Nery EB, Lynch KL (1978) Preliminary clinical studies of bioceramic in periodontal osseous defects. J Periodont 49:523–527PubMedGoogle Scholar
  7. 7.
    Daculsi G (1988) Biological properties of calcium phosphate biomaterials. In: Babighian G, Veldman JE, Portman M, Zini C (eds) Transplants and implants in otology, Kugler and Ghedini Publications, Amsterdam, 227–230Google Scholar
  8. 8.
    Daculsi G, LeGeos RZ, Heughebaert M, Jans I (1988) Biological apatites associated with calcium phosphate ceramics implanted in osseous and non-osseous sites. J Dent Res 67:370Google Scholar
  9. 9.
    Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (in press) Transformation of biphasic calcium phosphate ceramics in vivo. Ultrastructural and physico-chemical characterization. J Biomed Mat ResGoogle Scholar
  10. 10.
    Frank RM, Gineste M, Benque EP, Hemmerle J, Duffort JF, Heughebaert M (1987) Etude ultrastructurale de l'induction osseuse apres implantation de bioapatities chez l'homme. J Biol Buccale 15:125–134PubMedGoogle Scholar
  11. 11.
    Heughebaert M, LeGeros RZ, Gineste M, Guilhem A (1988) Hydroxyapatite (HA) ceramics implanted in non-bone-forming sites. Physico-chemical characterization. J Biomed Mat Res 22:257–268CrossRefGoogle Scholar
  12. 12.
    Jarcho M, Kay JF, Drobeck HP, Doremus RH (1976) Tissue, cellular and subcellular events at bone-ceramic hydroxylapatile interface. J Bioeng 1:79–92Google Scholar
  13. 13.
    Tracy BM, Doremus RH (1984) Direct electron microscopy studies of the bone hydroxylapatite interface. J Biomed Mater Res 18:719–726PubMedCrossRefGoogle Scholar
  14. 14.
    Heughebaert M, Daculsi G, Heughebeert JC, D'Yvoire F (1986) Calcium aluminum phosphate for biological appllications. In: Christel P, Meunier A, Lee AJC (eds) Biological and biomechanical performance of biomaterials. Elsevier Science Publishers, BV, Amsterdam, pp 33–38Google Scholar
  15. 15.
    LeGeros RZ (1986) Variability of β-TCP/HA ratios in sintered “apatites”. J Dent Res 65:292Google Scholar
  16. 16.
    Daculsi G, Kerebel B, Verbaere A (1978) Methode de mesure des cristaux d'apatite de la dentine humaine en microscopie electronique de haute resolution. C R Acad Sci Paris 286:1439–1441Google Scholar
  17. 17.
    Kerebel B, Daculsi G, Verbaere A (1976) Ultrastructural and crystallographic study of biological apatites. J Ultrastruct Res 57:266–275PubMedCrossRefGoogle Scholar
  18. 18.
    LeGeros RZ, LeGeros JP, Trautz OR, Klein E (1970) Spectral properties of carbonate in carbonate containing apatites. Dev Appl Spec 7B:3–12Google Scholar
  19. 19.
    Osborn JF, Newesely H (1980) The material science of calcium phosphate ceramic. Biomaterials 1:108–111PubMedCrossRefGoogle Scholar
  20. 20.
    Ducheyne P (1987) Bioceramics: material characteristic versus in vivo behavior. J Biomed Mater Res 21:219–236PubMedGoogle Scholar
  21. 21.
    Ganeles J, Listgarten MA, Evian CI (1986) Ultrastructure of durapatite periodontal tissue interface in human intrabony defects. J Periodontol 57:133–140PubMedGoogle Scholar
  22. 22.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2:117–141CrossRefGoogle Scholar
  23. 23.
    Gross U, Schumacher D, Strunz V (1983) Comparative studies on the tissue reaction after implantation of glass ceramic into human, pig, rat, chicken bones. In: Vincenzine P (ed) Ceramics in surgery, pp. 161–168Google Scholar
  24. 24.
    Gregoire M, Orly I, Kerebel LM, Kerebel B (1987) In vitro effects of calcium phosphate biomaterials on fibroblastic cell behavior. Cell Biol 59:255–260Google Scholar
  25. 25.
    LeGeros RZ, Parsons R, Daculsi G, Diressens F, Lee D, Metsger S (1988) Biodegradation/bioresorption of calcium phosphate ceramics: task group report. In: Ducheyne P, Lemons J (eds) Bioceramics: material characterization vs. in vivo behavior, Ann NY Acad Sci 523:268–291Google Scholar
  26. 26.
    Cameron HU, Macnab I, Pilliar RM (1977) Evaluation of a biodegradable ceramic implant. J Biomed Mater Res 11:179–181PubMedCrossRefGoogle Scholar
  27. 27.
    Daculsi G, Orly I, Gregoire M, Heughebaert M, Hartmann DJ, Kerebel B (1986) Cell interactions with mixed calcium phosphate (TCP and HA) and alumina solid phase: an ultrastructural study. In: Advances in biomaterials: biological and biomechanical performances of biomaterials, vol IV. ESV Publishers, Amsterdam, pp 337–342Google Scholar
  28. 28.
    Daculsi G, Hartmann DJ, Heughebaert M, Hamel L, Le Nihouannen JC (1988) In vivo cell interactions with calcium phosphate. J Submicroscop Cytol 20:379–384Google Scholar
  29. 29.
    Klein CPAT, Driessen AA, De Groot K (1984) Relationship between the degradation behavior of calcium phosphate ceramics and their physical chemical characteristics and ultrastructural geometry. Biomaterials 5:157–160PubMedCrossRefGoogle Scholar
  30. 30.
    Osborn JF, Donath K (1984) Die ensale implantation von hydroxylapatite keramik und tricalciumphosphatkeramik: integration vs substitution. Deutsch Zahn Zeit 39:970–976Google Scholar
  31. 31.
    LeGeros RZ, Orly I, Gregoire M, Abergas T, Kazimiroff J (1987) Physico-chemical properties of calcium phosphate biomaterials used as bone substitutes. Trans 13th Ann Meeting Biomaterials (abstract 84)Google Scholar
  32. 32.
    Renooij W, Hoogendoorm A, Visser WJ, Lentferink RHF, Lentferink MGJ, Van Leperen H, Oldenburg SJ, Janssen WM, Akkermans LMA, Wittebol P (1985) Bioresorption of ceramic strontium 85-labeled calcium phosphate implants in dog femora. A pilot study to quantitate bioresorption of cermic implants of hydroxylapatite and tricalcium orthophosphate in vivo. Clin Orthop Rel Res 197:272–285Google Scholar
  33. 33.
    Amler MH (1987) Osteogenic potential of non-vital tissues and synthetic implant materials. J Periodont 58:758–761PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • G. Daculsi
    • 1
  • R. Z. LeGeros
    • 2
    • 4
  • M. Heughebaert
    • 3
  • I. Barbieux
    • 1
  1. 1.Unite de Recherche sur les Tissus CalcifiesU225 INSERMNantesFrance
  2. 2.UFR OdontologieNantesFrance
  3. 3.Laboratoire de Physico-chimie des SolidesEcole de ChimieToulouseFrance
  4. 4.New York University College of DentistryNew YorkUSA

Personalised recommendations