Skip to main content
Log in

Osteoclast cytomorphometry demonstrates an abnormal population in B cell malignancies but not in multiple myeloma

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Increased bone resorption in the vicinity of myeloma cells is mediated by local stimulating factors. Other malignancies of the B cell lineage are also able to produce resorbing factors responsible for increased bone resorption. We have studied three groups of subjects: 10 patients with overt multiple myeloma, 10 patients with a B cell malignancy, and 10 healthy human subjects as controls. Patients were studied at the time of diagnosis and had a transiliac bone biopsy. Osteoclasts were evident on histological sections by their acid phosphatase activity. A software was developed on an automatic image analyzer (Leitz TAS+) for measuring the maximal Feret's diameter (Oc.Le) of each osteoclast (corresponding to the osteoclast length). The histogram of Oc.Le frequency distribution was supplied in each group. In myeloma patients, the Oc.Le frequency distribution was similar to that in normal subjects and showed the histogram to be asymetric with a positive skew (maximum peak at 20–25 μm). With a graphical analysis, this distribution was shown to follow a lognormal distribution corresponding to a homogeneous osteoclast population. In other B cell malignancies, Oc.Le displayed a bimodal distribution with a peak at 20–25 μm and a lower peak at 10–15 μm. The graphical analysis showed that small (mononucleated?) osteoclasts are present in B cell malignancies with normal osteoclasts. This might reflect the secretion of different soluble factors by malignant cells of the B lymphocyte lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bataille R, Chappard D, Alexandre C, Sany J (1986) Importance of quantitative histology of bone changes in monoclonal gammopathy. Br J Cancer 53:805–810

    PubMed  CAS  Google Scholar 

  2. Valentin Opran A, Charhon S, Meunier PJ, Edouard C, Arlot ME (1982) Quantitative histology of myeloma-induced bone changes. Br J Hematol 52:601–610

    CAS  Google Scholar 

  3. Hansen MM (1973) Chronic lymphocytic leukemia. Scand J Hematol (S 18):1–286

    Google Scholar 

  4. Rossi JF, Bataille R, Chappard D, Alexandre C, Janbon C (1987) B cell malignancies presenting with unusual bone involvement and mimicking multiple myeloma. Study of nine cases. Am J Med 83:10–16

    Article  PubMed  CAS  Google Scholar 

  5. Marcelli C, Chappard D, Rossi JF, Jaubert J, Alexandre C, Dessauw Ph, Baldet P, Bataille R (1988) Histologic evidence of an abnormal bone remodeling in B cell malignancies other than multiple myeloma. Cancer 62:1163–1170

    Article  PubMed  CAS  Google Scholar 

  6. Ploem JS (1988) Modern image analysis methods in hematology. Nouv Rev Franç Hematol 30:45–49

    CAS  Google Scholar 

  7. Vico L, Chappard D, Alexandre C (1987) Etude histologique de la masse et des activités cllulaires osseuses après un décubitus de 120 jours. Essai de protocoles préventifs. Ann Biol Clin 45:145–151

    CAS  Google Scholar 

  8. Chappard D, Alexandre C, Camps M, Monthéard JP, Riffat G (1983) An embedding process of iliac bone biopsies at low temperature using glycol and methylmethacrylate (GMA and MMA). Stain Technol 58:299–308

    PubMed  CAS  Google Scholar 

  9. Chappard D, Alexandre C, Riffat G (1983) Histochemical identification of osteoclasts. Review of current methods and reappraisal of a simple procedure for routine diagnosis on undecalcified human iliac bone biopsies. Basic Appl Histochem 27:75–85

    PubMed  CAS  Google Scholar 

  10. Chappard D, Azema J, Alexandre C, Becker JM (1989) Cytomorphometry of osteoclasts. Med Lab Sci 46:363–366

    PubMed  CAS  Google Scholar 

  11. Bahr GF, Mickel UV (1987) Mean, volume and dimensional distributions in biology, with special reference to cells. Anal Quant Cytol Histol 9:341–354

    PubMed  CAS  Google Scholar 

  12. Marks SC, Popoff SN (1988) Bone cell biology: the regulation of development, structure and function in the skeleton. Am J Anat 183:1–44

    Article  PubMed  Google Scholar 

  13. Chappard D (in press) osteoclast count on human bone biopsies: why and how? In: Takahashi H (ed) Proc 5th Int Workshop on Bone Morphometry. Nishimura, Niigata

  14. Beier K, Fahini ND (1987) Application of automatic image analysis for morphometric studies of peroxisomes stained cytochemically for catalase II. Light microscopic application. Cell Tissue Res 247:179–185

    Article  PubMed  CAS  Google Scholar 

  15. Collan Y (1987) Studying cells with different methods in serial sections: principles of matching. Acta Stereol 6: S2:157–167

    Google Scholar 

  16. Collan Y, Torkkeli T, Pesonen E, Jantunen E, Kosma VM (1987) Application of morphometry in tumor pathology. Anal Quant Cytol Histol 9:79–88

    PubMed  CAS  Google Scholar 

  17. Sinnott EW (1937) The relation of gene to character in quantitative inheritance. Proc Natl Acad Sci 23:224–227

    Article  PubMed  CAS  Google Scholar 

  18. Bucher O (1955) Karyometrische Untersuchungen an Gewebekulturen. Acta Anat 23:312–336

    Article  PubMed  CAS  Google Scholar 

  19. Mundy GR, Raisz LG, Looper RA, Schechter GP, Salmon SE (1974) Evidence for the secretion of an osteoclast-stimulating factor in myeloma. N Engl J Med 291:1041–1046

    Article  PubMed  CAS  Google Scholar 

  20. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors. Nature 319:516–518

    Article  PubMed  CAS  Google Scholar 

  21. Bataille R, Klein B, Jourdan M, Rossi JF, Durie BGM (1989) Spontaneous secretion of tumor necrosis factor-beta by human myeloma cell lines. Cancer 63:877–880

    Article  PubMed  CAS  Google Scholar 

  22. Garett IR, Durie BGM, Nedwin GE, Gillespie A, Bringman T, Sabatini M, Bertolini DR, Mundy GR (1987) Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N Engl J Med 317:526–532

    Article  Google Scholar 

  23. Kawano M, Yamamoto I, Iwato K, Tanaka H, Asaoku M, Tanabe O, Ishikawa H, Noburyoshi M, Ohmoto Y, Hirai Y, Kuramoto A (1989) Interleukin-1β rather than lymphotoxin as the major bone-resorbing activity in human multiple myeloma. Blood 73:1646–1649

    PubMed  CAS  Google Scholar 

  24. Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD (1989) Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast-like cells in vitro. J Bone Min Res 4:113–118

    CAS  Google Scholar 

  25. Evans RA, Dunstan CR, Baylink DJ (1979) Histochemical identification of osteoclasts in undecalcified sections of human bone. Min Elect Metab 2:179–185

    CAS  Google Scholar 

  26. Baron R, Tran Van P, Nefussi JR, Vignery A (1986) Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts. Am J Pathol 122:363–378

    PubMed  CAS  Google Scholar 

  27. Wijngaert Van de FP, Burger EH (1986) Demonstration of tartrate-resistant acid phosphatase in undecalcified glycolmethacrylate-embedded mouse bone: a possible marker for (pre) osteoclast identification. J Histochem Cytochem 34: 1317–1323

    PubMed  Google Scholar 

  28. Vaes G (1988) Cellular biology and biochemical mechanism of bone resorption. Clin Orthop Rel Res 231:239–271

    CAS  Google Scholar 

  29. Mundy GR (1983) Monocyte-macrophage system and bone resorption. Lab Invest 49:119–121

    PubMed  CAS  Google Scholar 

  30. Ali NN, Jones SJ, Boyde A (1984) Monocyte-enriched cell on calcified tissues. Anat Embryol 170:169–175

    Article  PubMed  CAS  Google Scholar 

  31. Chambers TJ, Horton MA (1984) Failure of cells of the mononuclear phagocyte series to resorb bone. Calcif Tissue Int 36:556–558

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi N, Yamana H, Yoshiki S, Roodman GD, Mundy GR, Jones SJ, Boyde A, Suda T (1988) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122:1373–1382

    Article  PubMed  CAS  Google Scholar 

  33. Fuller K, Chambers TJ (1989) Bone matrix stimulates osteoclastic differentiation in cultures of rabbit bone marrow cells. J Bone Min Res 4:179–183

    Article  CAS  Google Scholar 

  34. Rossi JF, Klein B, Commes T, Jourdan M (1985) Interleukin 2 production in B cell chronic lymphocytic leukemia. Blood 66:840–846

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappard, D., Rossi, J.F., Bataille, R. et al. Osteoclast cytomorphometry demonstrates an abnormal population in B cell malignancies but not in multiple myeloma. Calcif Tissue Int 48, 13–17 (1991). https://doi.org/10.1007/BF02555791

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555791

Key words

Navigation