Skip to main content
Log in

Increase of bone volume in vitamin D-repleted rats by massive administration of 24R,25(OH)2D3

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

A large dose of 24R,25(OH)2D3 was administered to the vitamin D-repleted rat to examine its effect on the bone. Male Wistar rats were fed a diet containing 0, 0.025, 1.25, 4.0, and 12.5 ppm 24R,25(OH)2D3 for 2 years starting at age 6 weeks. The estimated amounts of daily intake of 24R,25(OH)2D3 were 0, 93, 4640, 14680, and 49580 ng/100 g body weight, respectively. No notable difference was found in either the weight or the death rate of the animal. The long-term administration of massive doses of 24R,25(OH)2D3 did not lead to hypercalcemia nor did it affect the blood phosphorus, alkaline-phosphatase, or creatinine levels. Radiographs revealed a striking increase in the bone density on the bones from the animals treated with 1.25 ppm or more 24R,25(OH)2D3. Direct single photon absorptiometry revealed a dose-dependent increase in total bone minerals of both the femur and coccyx. Histological examination revealed a marked increase in the cortical thickness of the femur as well as in the cancellous bone volume of the coccyx. Polarizing microscopy demonstrated the lamellar structure of the bone, and undecalcified sections confirmed the increase of mineralized bone. Ash weight, calcium, phosphorus, and magnesium contents on the tibia and fibula also indicated the ascending dose-dependent increase up to 150% of the control. The parameters of bone size were not altered in any group. These results clearly suggest that 24R,25(OH)2D3 given in massive doses has the pharmacological action of increasing bone volume in the rat without causing remarkable hypercalcemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walters MR, Hunziker W, Norman AW (1981) Ubiquitous effects of the vitamin D endocrine system. Trends In Pharmacolog Sci 2:42–44

    Article  CAS  Google Scholar 

  2. Chan YL, Mason RS, Parmentier M, Savdie E, Lissner D, Posen D (1983) Vitamin D metabolism in nephrotic rats. Kidney Int 24:336–341

    PubMed  CAS  Google Scholar 

  3. Parfitt AM, Mathew CHE, Brommage R, Jarnagin K, DeLuca HF (1984) Calcitriol but no other metabolite of vitamin D is essential for normal bone growth and development in the rat. J Clin Invest 73:576–586

    Article  PubMed  CAS  Google Scholar 

  4. Tanaka Y, DeLuca HF, Kobayashi Y, Taguchi T, Ikekawa N, Morisaki M (1979) Biological activity of 24,24-difluoro-25-hydroxyvitamin D3. Effect of blocking of 24-hydroxylation on the functions of vitamin D. J Biol Chem 254:7163–7167

    PubMed  CAS  Google Scholar 

  5. Corvol MT, Dumontier MF, Garabedian B, Rapport R (1978) Vitamin D and cartilage. II. Biological activity of 25-hydroxycholecalciferol and 24,25- and 1,25-dihydroxycholecalciferols on cultured growth plate chondrocytes. Endocrinology 102:1209–1274

    Google Scholar 

  6. Endo H, Kiyoki M, Kawashima K, Naruchi T (1980) Vitamin D3 metabolites and PTH synergistically stimulate bone formation of chick embryonic femur in vitro. Nature 286:262–264

    Article  PubMed  CAS  Google Scholar 

  7. Gordeladze JE, Gautvik KM (1986) Hydroxycholecalciferols modulate parathyroid hormone and calcitonin-sensitive adenylyl cyclase in bone and kidney of rats, a possible physiological role for 24,25-dihydroxyvitamin D3. Biochem J 217:899–902

    Google Scholar 

  8. Henry HL, Norman AW (1978) Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science 210:835–837

    Article  Google Scholar 

  9. Mahgoub A (1981) Interaction between 24R,25-dihydroxycholecalciferol and 1,25-dihydroxycholecalciferol on45Ca release from bone in vitro. Calcif Tissue Int 33:663–666

    Article  PubMed  CAS  Google Scholar 

  10. Ornoy A, Goodwin D, Noff D, Edelstein S (1978) 24,25-Dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature 276:517–519

    Article  PubMed  CAS  Google Scholar 

  11. Sömjen D, Binderman I, Weisman Y (1983) The effects of 24R,25-dihydroxycholecalciferol and 1 alpha, 25-dihydroxycholecalciferol on ornithine decarboxylase activity and DNA synthesis in the epiphysis and diaphysis of rat bone in the duodenum. Biochem J 214:293–298

    PubMed  Google Scholar 

  12. Tam CS, Heershe J, Jones G, Murray TM, Rasmussen H (1986) The effect of vitamin D on bone in vivo. Endocrinology 118:2217–2224

    PubMed  CAS  Google Scholar 

  13. Wientroub S, Price PA, Reddi AH (1987) The dichotomy in the effects of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 on bone gamma-carbocyglutamic acid-containing protein in serum and bone in vitamin D-deficient rats. Calcif Tissue Int 40:166–172

    PubMed  CAS  Google Scholar 

  14. Wilhelm F, Ross FP, Norman AW (1986) Specific binding of 24R,25-dihydroxyvitamin D3 to chick intestinal mucosa: 24R,25-dihydroxyvitamin D3 is an allosteric effector of 1,25-dihydroxyvitamin D3 binding. Arch Biochem Biophy 249:88–94

    Article  CAS  Google Scholar 

  15. Manolagas SC, Deftos LJ (1981) Comparison of 1,25-,25-, and 24,25-hydroxylated vitamin D3 binding in fetal rat calvariae and osteogenic sarcoma cells. Calcif Tissue Int 33:655–661

    Article  PubMed  CAS  Google Scholar 

  16. Connerty HV, Briggs AR (1966) Determination of serum calcium by means of orthocresolphthalein complexone. Am J Clin Pathol 45:290–296

    PubMed  CAS  Google Scholar 

  17. Hagaman JR, Sanchez TV, Myers RC (1985) The effect of lactation on the mineral distribution profile of the rat femur by single photon absorptiometry. Bone 6:301–305

    Article  PubMed  CAS  Google Scholar 

  18. Rice E, Lapara CZ (1963) Rapid ultramicrospectrophotometric determination of magnesium. Clin Chim Acta 10:360–364

    Article  Google Scholar 

  19. Hass GM, Trueheart RE, Taylor CB, Stumpe M (1958) An experimental histologic study of hypervitaminosis D. Am J Pathol 34:395–431

    PubMed  CAS  Google Scholar 

  20. Schneider H, Steenbock H (1939) A low phosphorus diet and the response of rats of vitamin D2. J Biol Chem 128:159–171

    CAS  Google Scholar 

  21. Gallagher JA, Lawson DEM (1980) Histological observations on the failure of rachitic rat bones to respond to 1,25(OH)2D3. Calcif Tissue Int 31:215–223

    Article  PubMed  CAS  Google Scholar 

  22. Hartenbower DL, Stanley TM, Coburn JW, Norman AW (1977) Serum and renal histologic changes in the rat following administration of toxic amounts of 1,25(OH)2D3. In: Norman AW, Schaefer K, Coburn JW, DeLuca HF, Fraser D, Grigoleit HG, Herrath DV (eds) Vitamin D: biochemical, chemical and clinical aspects related to calcium metabolism. Walter de Gruyter, Berlin, pp 587–589

    Google Scholar 

  23. Queille ML, Miravet LM, Bordier P, Redel J (1978) The action of vitamin D metabolites (25(OH)D3, 1,25(OH)2D3, 24,25(OH)2D3, 25,26(OH)2D3) on vitamin D-deficient rats. Biomedicine 28:237–242

    PubMed  CAS  Google Scholar 

  24. Day GG, Follis RH (1941) Skeletal changes in rats receiving estradiol benzoate as indicated by histological studies and determinations of bone ash, serum calcium and phosphatase. Endocrinology 28:83–93

    Article  CAS  Google Scholar 

  25. Foster GV, Doyle FH, Bordier PB, Matrajt H, Tun-Chot S (1967) Roentgenologic and histologic changes in bone produced by thyrocalcitonin. Am J Med 43:691–695

    Article  PubMed  CAS  Google Scholar 

  26. Wase AW, Solewski J, Rickes E, Seidenberg J (1967) Action of thyrocalcitonin on bone. Nature 214:388–389

    Article  PubMed  CAS  Google Scholar 

  27. Kalu DN, Pennock J, Doyle FH, Foster GV (1970) Parathyroid hormone and experimental osteosclerosis. Lancet (i):1363–1366

    Article  Google Scholar 

  28. Schenk R, Merz WZ, Muhlbauer R, Russell RGG, Fleisch H (1973) Effect of ethane-1-hydroxy-1,1-diphosphonate(EHDP) and dichloromethylene diphosphonate(Cl2MDP) on the calcification and resorption of cartilage metaphysis of rats. Calcif Tissue Int 11:196–214

    Article  CAS  Google Scholar 

  29. Urist MR, Budy AM, McLean FC (1950) Endosteal-bone formation in estrogen-treated mice. J Bone Joint Surg 32A:143–162

    PubMed  CAS  Google Scholar 

  30. Aceitero J, Gaytan F, Ranz FB (1987) Effects of neonatal estrogenization on rat bone development: a histomorphometric study. Calcif Tissue Int 40:189–193

    PubMed  CAS  Google Scholar 

  31. Holick MF, Baxter LA, Scraufrogel PK, Tavela TE, DeLuca HF (1976) Metabolism and biological activity of 24,25-dihydroxyvitamin D3 in the chick. J Biol Chem 251:397–402

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Kurokawa, T. & Orimo, H. Increase of bone volume in vitamin D-repleted rats by massive administration of 24R,25(OH)2D3 . Calcif Tissue Int 43, 235–243 (1988). https://doi.org/10.1007/BF02555140

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555140

Key words

Navigation