Skip to main content

Advertisement

Log in

Changes in cartilage proteoglycans associated with calcification

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The purposes of these experiments were to study the biosynthetic and postbiosynthetic relationships between proteoglycans in noncalcified growth cartilage and calcified cartilage in metaphysis from the costochondral junctions of immature rabbits. Based onin vivo experiments in which 35 S-sodium sulfate was injected into rabbits, it is shown that proteoglycans from the hypertrophic region becomes part of the calcified cartilage matrix which is to be incorporated into the metaphysis. The proteoglycan aggregates in the growth apparatus undergo partial disaggregation and degradation. There is approximately a 25% decrease in aggregation from regions of the rib distal to the metaphyseal-growth plate junction (69%) to the region proximal to it (50%). In contrast, in their final state in calcified cartilage, the proteoglycans are more completely disaggregated and the proteoglycans subunits are smaller, as adjudged from gel chromatography. Control experiments indicate that although some artifactual disaggregation is produced by the extraction process, it is not of the same magnitude as that seen in the actual isolation experiments nor are the subunits reduced in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hascall VC, Sajdera SW (1970) Physical properties and polydispersity of proteoglycan from bovine nasal cartilage. J Biol Chem 245:4920–4930

    PubMed  CAS  Google Scholar 

  2. Heinegard D (1977) Polydispersity of cartilage proteoglycans. Structural variations in size and buoyant density of the molecules. J Biol Chem 252:1980–1989

    PubMed  CAS  Google Scholar 

  3. Buckwalter JA, Rosenberg LC (1982) Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich regions of proteoglycan subunit core protein. J Biol Chem 257:9830–9839

    PubMed  CAS  Google Scholar 

  4. Kimura JH, Osdoby P, Caplan AI, Hascall VC (1978) Electron microscopic and biochemcial studies of proteoglycan polydispersity in chick limb chondrocyte cultures. J Biol Chem 253:4721–4729

    PubMed  CAS  Google Scholar 

  5. Hardingham TE, Muir H (1972) The specific interaction of hyaluronic acid with cartilage proteoglycans. Biochim Biophys Acta 279:401–405

    PubMed  CAS  Google Scholar 

  6. Hascall VC, Sajdera SW (1996) Proteinpolysaccharide complex from bovine nasal cartilage. The function of glycoprotein in the formation of aggregates. J Biol Chem 244:2384–2396

    Google Scholar 

  7. Hardingham TE (1979) The role of link-protein in the structure of cartilage proteoglycan aggregates. Biochem J 177:237–247

    PubMed  CAS  Google Scholar 

  8. Tang LH, Rosenberg L, Reiner A, Poole AR (1979) Proteoglycans from bovine nasal cartilage. Properties of a soluble link protein. J Biol Chem 254:10521–10531

    Google Scholar 

  9. Choi HU, Tang LH, Johnson TL, Rosenberg LC (1985) Proteoglycans from bovine nasal and articular cartilages. Fractionation of the link proteins by wheat germ agglutinin affinity chromatography. J Biol Chem 260:13370–13376

    PubMed  CAS  Google Scholar 

  10. Dziewiatkowski DD (1964) The role of sulfated protein-polysaccharides in calcification. Clin Orthop Rel Res 35:189–201

    CAS  Google Scholar 

  11. Campo RD (1970) protein-polysaccharides of cartilage and bone in health and disease. Clin Orthop Rel Res 68:182–209

    CAS  Google Scholar 

  12. Buckwalter JA (1983) Proteoglycan structure in calcifying cartilage. Clin Orthop Rel Res 172:207–232

    CAS  Google Scholar 

  13. Ehrlich MG, Armstrong AL, Neuman RG, Davis MW, Mankin HJ (1982) Patterns of proteoglycan, degradation by a neutral protease from human growth plate epiphyseal cartilage. J Bone Joint Surg 64A:1350–1354

    CAS  Google Scholar 

  14. Bowness JM, Jacobs M (1968) Chondroitin sulfate changes in puppy rib cartilage during the period of calcification. Can J Biochem 46:63–67

    Article  Google Scholar 

  15. Campo RD (1974) Soluble and resistant proteoglycans in epiphyseal plate cartilage. Calcif Tissue Res 14:105–119

    Article  PubMed  CAS  Google Scholar 

  16. Poole AR, Pidoux I, Rosenberg L (1982) Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol 92:249–260

    Article  PubMed  CAS  Google Scholar 

  17. Scherft JP, Moskalewski S (1984) The amount of proteoglycans in cartilage matrix and the onset of mineralization. Metab Bone Dis Rel Res 5:195–203

    Article  CAS  Google Scholar 

  18. Stambaugh JE, Brighton CT (1980) Diffusion in the various zones of the normal and the rachitic growth plate. J Bone Joint Surg 62A:740–749

    Google Scholar 

  19. Sajdera SW, Hascall VC (1969) Proteinpolysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J Biol Chem 244:77–87

    PubMed  CAS  Google Scholar 

  20. Oegema TR Jr, Hascall VC, Dziewiatkowski DD (1975) Isolation and characterization of proteoglycans from the Swarm rat chondrosarcoma. J Biol Chem 250:6151–6159

    PubMed  CAS  Google Scholar 

  21. Wasteson A (1971) Properties of fractionated chondroitin sulfate from ox nasal septa. Biochem J 122:477–485

    PubMed  CAS  Google Scholar 

  22. Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  PubMed  CAS  Google Scholar 

  23. Gardell S (1953) Separation on Dowex 50 ion exchange resin of glucosamine and galactosamine and their quantitative determination. Acta Chem Scand 7:207–215

    Article  CAS  Google Scholar 

  24. Kivirikko KI, Laitinen O, Prockop DJ (1967) Modifications of a specific assay for hydroxyproline in urine. Anal Biochem 19:249–255

    Article  PubMed  CAS  Google Scholar 

  25. Campo RD, Tourtellotte CD (1967) The composition of bovine cartilage and bone. Biochim Biophys Acta 141:614–624

    PubMed  CAS  Google Scholar 

  26. Franzen A, Bjornsson S, Heinegard D (1981) Cartilage proteoglycan aggregate formation. Role of link protein. Biochem J 197:669–674

    PubMed  CAS  Google Scholar 

  27. Pita JC, Muller F, Morales SM, Alarcon E (1979) Ultracentrifugal characterization of proteoglycans from rat growth cartilage. J Biol Chem 254:10313–10320

    PubMed  CAS  Google Scholar 

  28. Axelsson I, Berman I, Pita JC (1983) Proteoglycans from rabbit articular and growth plate cartilage. Ultracentrifugation, gel chromatography, and electron microscopy. J Biol Chem 258:8915–8921

    PubMed  CAS  Google Scholar 

  29. Reddi AH, Hascall VC, Hascall GK (1978) Changes in proteoglycan types during matrix-induced cartilage and bone development. J Biol Chem 253:2429–2436

    PubMed  CAS  Google Scholar 

  30. Shepard N, Mitchell N (1985) Ultrastructural modifications of proteoglycans coincident with mineralization in local regions of rat growth plate. J Bone Joint Surg 67A:455–464

    Google Scholar 

  31. Kuettner KE, Eisenstein R, Sorgente N (1975) Lysozyme in calcifying tissues. Clin Orthop Rel Res 112:316–339

    CAS  Google Scholar 

  32. Lohmander S, Hjerpe A (1975) Proteoglycans of mineralizing rib and epiphyseal cartilage. Biochim Biophys Acta 404:93–109

    PubMed  CAS  Google Scholar 

  33. Campo RD (1981) Studies on extractable and resistant proteoglycans from metaphyseal and cortical bone and cartilage. Calcif Tissue Int 33:89–99

    Article  PubMed  CAS  Google Scholar 

  34. Mow VC, Mak AF, Lai WM, Rosenberg LC, Tang LH (1984) Viscoelastic properties of proteoglycan subunits and aggregates in varying solution concentrations. J Biomechanics 17:325–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campo, R.D., Romano, J.E. Changes in cartilage proteoglycans associated with calcification. Calcif Tissue Int 39, 175–184 (1986). https://doi.org/10.1007/BF02555115

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555115

Key words

Navigation