Skip to main content

Advertisement

Log in

Carbohydrate-controlled precipitation of apatite with coprecipitation of organic molecules in human saliva: Stabilizing role of polyols

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Addition of common dietary carbohydrates to Millipore-treated human whole saliva either enhances or inhibits the formation of salivary precipitates, some carbohydrates showing no effect. The purpose of this study was to investigate the precipitation conditions more thoroughly and to elucidate the chemical nature of the precipitates formed. D-Xylose either enhanced precipitation (in long-term incubations) or had no appreciable effect (in 10 minute incubations). Other aldo- and ketosugars and disaccharides (maltose, sucrose, lactose) generally enhanced precipitation, whereas all polyols (xylitol, D-sorbitol, mannitol, and maltitol) retarded the formation of turbidity in saliva. Xylitol inhibited formation of precipitates also in the presence of D-xylose, dextrans, and starch. Fast protein liquid chromatography (FPLC) of EDTA-soluble pellets obtained by centrifugation of the precipitates produced two major protein fractions (I and II) with a molecular weight of 112,000 and 46,000, respectively. The carbohydrates exerted a selective effect on the relative size of I and II in that polyol incubations resulted in a I to II ratio of 1∶3, whereas control incubations (without added sugars) and incubations with other carbohydrates gave ratios of 1∶6 to 1∶10. Both peaks contained large amounts of acidic amino acids, proline, and glycine. The saliva precipitates contained a substantial portion of a crystalline phase that had the crystal structure of apatite, the individual crystallites being extremely small (<1 μm) with a Ca∶P ratio of 1.46. The carbohydrates had a similar effect on the overall inorganic composition of the precipitates, but they ahd a clearly selective effect on the rate of formation of precipitates and on the relative amount of coprecipitating salivary proteins. This selectivity indicates that these carbohydrates, when consumed habitually, may exert different effects on the precipitation of Ca-salts at mineral-deficient enamel and dentine sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kieboom APG, Buurmans HMA, van Leeuwen LK, van Benschop HJ (1979) Stability constants of (hydroxy) carboxylate and alditol-calcium (II) complexes in aqueous medium as determined by a solubility method. Rec J Royal Neth Chem Soc 98:394–395

    Google Scholar 

  2. Kieboom APG, Spoormaker T, Sinnema A, van der Toorn JM, van Bekkum H (1975)1H-NMR study of the complex formation of alditols with multivalent cations in aqueous solution using praseodymium (III) nitrate as shift reagent. Rec J Royal Neth Chem Soc 94:53–59

    CAS  Google Scholar 

  3. Beattie JK, Kelso MT (1981) Equilibrium and dynamics of the binding of calcium ion to sorbitol (D-glucitol). Aust J Chem 34:2563–2568

    Article  CAS  Google Scholar 

  4. Hämäläinen M, Mäkinen KK, Parviainen M, Koskinen T. (1985) Peroxal xylitol increases intestinal calcium absorption in the rat independently from vitamin D action. Mineral Electrolyte Metab 11:178–181

    Google Scholar 

  5. Hämäläinen M, Mäkinen KK (1983) Peroxal xylitol increases the concentration levels of tissue iron in the rat. Br J Nutr 50:109–112

    Article  PubMed  Google Scholar 

  6. Hämäläinen M, Mäkinen KK (1985) Duodenal xanthine oxidase (EC 1.2.3.2) and ferroxidase activities in the rat in relation to the increased iron absorption. Br J Nutr 54:493–498

    Article  PubMed  Google Scholar 

  7. Hämäläinen M (1988) Sugar alcohols and mineral metabolism. (Dissertation) University of Turku, Turku, Finland

    Google Scholar 

  8. Söderling E, Mäkinen KK (1986) Aggregation of human salivary Ca-proteinates in the presence of simple carbohydrates in vitro. Scand J Dent Res 94:125–131

    PubMed  Google Scholar 

  9. Mäkinen KK, Söderling E (1984) Solubility of calcium salts, enamel and hydroxyapatite in aqueous solutions of simple carbohydrates. Calcif Tissue Int 36:64–71

    Article  PubMed  Google Scholar 

  10. Mäkinen KK (1985) New biochemical aspects of sweeteners. Int Dent J 35:23–35

    PubMed  Google Scholar 

  11. Leach SA, Agalamanyi EA, Green RM (1983) Remineralization of the teeth by dietary means. In: Demineralization and remineralization of the teeth. IRL Press, London, pp 51–73

    Google Scholar 

  12. Horgan I (1981) A modified spectrophotometric method for determination of nanogram quantities of sialic acid. Clin Chim Acta 116:409–415

    Article  PubMed  CAS  Google Scholar 

  13. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 136:446–450

    Google Scholar 

  14. Rendleman JA Jr (1966) Complexes of alkali metals and alkali-earth metals with carbohydrates. Adv Carbohydrate Chem 21:209–271

    CAS  Google Scholar 

  15. Angyal SJ (1973) Complex formation between sugars and metal ions. Pure Appl Chem 35:131–146

    CAS  Google Scholar 

  16. Angyal SJ, Mills JA (1979) Complexes of carbohydrates with metal ions. XI. Paper electrophoresis of polyols in solutions of calcium ions. Aust J Chem 32:1993–2001

    Article  CAS  Google Scholar 

  17. Angyal SJ, Davies KP (1971) Complexing of sugars with metal ions. Chem Commun 500–501

  18. Vissink A, 's-Gravenmade EJ, Gelhard TBFM, Panders AK, Franken MH (1985) Rehardening properties of mucinor CMC-containing saliva substitutes on softened human enamel. Caries Res 19:212–218

    PubMed  CAS  Google Scholar 

  19. Lewin S (1974) Displacement of water and its control of biochemical reactions. Academic Press, London

    Google Scholar 

  20. Gekko K (1981) Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycine in aqueous polyol solutions. J Biochem 90:1633–1641

    PubMed  CAS  Google Scholar 

  21. Gekko K, Morikawa T (1981) Preferential hydration of bovine serum albumin in polyhydric alcohol-water mixtures. J Biochem 90:39–50

    PubMed  CAS  Google Scholar 

  22. Gekko K, Morikawa T (1981) Thermodynamics of polyol-induced thermal stabilization of chymotrypsinogen. J Biochem 90:51–60

    PubMed  CAS  Google Scholar 

  23. Ellison SA (1979) The identification of salivary components. In: Kleinberg I, Ellison SA, Manded ID (eds) Proceedings. Saliva and dental caries. IRL Press, New York, pp 13–27

    Google Scholar 

  24. Hay DI, Moreno EC (1979) Macromolecular inhibitors of calcium phosphate precipitation in human saliva. Their roles in providing a protective environment for the teeth. In: Kleinberg I, Ellison SA, Manded ID (eds) Proceedings. Saliva and dental caries. IRL Press, New York pp 45–58

    Google Scholar 

  25. Grön P, Hay DI (1976) Inhibition of calcium phosphate precipitation by human salivary secretions Arch Oral Biol 21:201–205

    Article  PubMed  Google Scholar 

  26. Hay DI, Schlesinger DH (1977) Human salivary statherin. A peptide inhibitor of calcium phosphate precipitation. In: Wassermann R, Corradino RA, Carafolai E, Krestsinger RH, MacLennan DH, Siegel FC (eds) Calcium binding proteins and calcium function. North Holland, New York, pp 401–408

    Google Scholar 

  27. Schlesinger DH, Hay DI (1977) Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J Biochem 252:1689–1695

    CAS  Google Scholar 

  28. Oppenheim FG, Hay DI, Franzblau C (1971) Proline-rich proteins from human parotid saliva. Biochemistry 10: 4233–4238

    Article  PubMed  CAS  Google Scholar 

  29. Bennick A, Connell GE (1971) Purification and partial characterization of four proteins from human parotid saliva. Biochem J 123:455–464

    PubMed  CAS  Google Scholar 

  30. Bennick A, Cannon M, Madapallimattam G (1979) The nature of the hydroxyapatite-binding site in salivary acidic proline-rich proteins Biochem J 183:115–126

    PubMed  CAS  Google Scholar 

  31. Scheinin A, Mäkinen KK, Tammisalo E, Rekola M (1975) Turku sugar studies. XVIII. Incidence of dental caries in relation to 1-year consumption of xylitol chewing gum. Acta Odont Scand (suppl 70) 33:307–316

    Google Scholar 

  32. Hefti AF, Kandelman DP (1986) Efficacy of partial sugar substitution by xylitol in caries prevention. Caries Res 20:184

    Google Scholar 

  33. Kandelman DP, Gagnon G (1987) Clinical results after 12 months from a study of the incidence and progression of dental caries in relation to consumption of chewing gum containing xylitol in school preventive programs. J Dent Res 66:1407–1411

    PubMed  CAS  Google Scholar 

  34. Kandelman DP, Bär A, Hefti A (1988) Collaborative WHO xylitol field study in French Polynesia. I. Baseline prevalence and 32-month caries increment. Caries Res 22:55–62

    PubMed  CAS  Google Scholar 

  35. Scheinin A, Bánóczy J, Szöke J, Esztári I, Pienihäkkinen K, Scheinin U, Tiekso J, Zimmerman P, Hadas E (1985) Collaborative WHO xylitol field studies in Hungary. I. Three-year caries activity in institutionalized children. Acta Odont Scand 43:327–347

    PubMed  CAS  Google Scholar 

  36. Scheinin A, Pienihäkkinen K, Tiekso J, Bánóczy J, Szöke J, Esztári I, Zimmerman P, Hadas E (1985) Collaborative WHO xylitol field studies in Hungary. VII. Two-year caries incidence in 976 institutionalized children. Acta Odont Scand 43:381–387

    PubMed  CAS  Google Scholar 

  37. Isokangas P, Alanen P, Tiekso J, Mäkinen KK (1988) Xylitol chewing gum in caries prevention: a field study in children. JADA 117:315–320

    PubMed  CAS  Google Scholar 

  38. Knuuttila MLE, Mäkinen KK (1981) Extracellular hydrolase activity of the cells of the bacteriumStreptococcus mutans isolated from man and grown on glucose or xylitol. Arch Oral Biol 26:899–904

    Article  PubMed  CAS  Google Scholar 

  39. Vadeboncoeur C, Trahan L, Mouton C, Mayrand D (1983) Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J Dent Res 62:882–884

    PubMed  CAS  Google Scholar 

  40. Assev S, Rölla G (1986) Sorbitol increases the growth inhibition of xylitol onStreptococcus mutans OMZ 176. Acta Pathol Microbiol Immunol Scand (Sect B) 94:231–237

    CAS  Google Scholar 

  41. Assev S, Scheie AA (1986) Xylitol metabolism in xylitol-resistant strains of streptococci. Acta Pathol Microbiol Immunol Scand (Sect B) 94:239–243

    CAS  Google Scholar 

  42. Assev S, Vegarud G, Rölla G (1985) Addition of xylitol to the growth medium ofStreptococcus mutans OMZ 176—effect on the synthesis of extractable glycerol-phosphate polymers. Acta Pathol Microbiol Immunol Scand (Sect B) 93:145–149

    CAS  Google Scholar 

  43. Assev S, Wåler SM, Rölla G (1983) Further studies on the growth inhibition of some oral bacteria by xylitol. Acta Pathol Microbiol Immunol Scand (Sect B) 91:261–265

    CAS  Google Scholar 

  44. Gehring F, Mäkinen KK, Larmas M, Scheinin A (1975) Turku Sugar Studies. X. Occurrence of polysaccharideforming streptococci and ability of the mixed plaque microbiota to ferment various carbohydrates. Acta Odont Scand (suppl 70) 33:223–237

    Google Scholar 

  45. Loesche WJ, Grossman NS, Earnest R, Corpron R (1984) The effect of chewing xylitol gum on the plaque and saliva levels ofStreptococcus mutans. JADA 108:587–592

    PubMed  CAS  Google Scholar 

  46. Bánóczy J, Orsós M, Pienihäkkinen K, Scheinin A (1985) Collaborative WHO xylitol field studies in Hungary. IV. Saliva levels ofStreptococcus mutans. Acta Odont Scand 43:367–370

    PubMed  Google Scholar 

  47. Mäkinen KK, Söderling E, Hurttia H, Lehtonen O-P, Luukkala, E (1985) Biochemical, microbiologic, and clinical comparison between two dentifrices that contain different mixtures of sugar alcohols. JADA 111:745–751

    PubMed  Google Scholar 

  48. Mäkinen KK, Isokangas P (1988) Relationship between carbohydrate sweeteners and oral diseases. Prog Food Nutr Sci 12:73–109

    PubMed  Google Scholar 

  49. Rekola M (1981) Comparative effects of xylitol- and sucrose-sweetened chew tablets and chewing gums on plaque quantity. Scand J Dent Res 89:393–399

    PubMed  CAS  Google Scholar 

  50. Rekola M (1982) A comparison of the effects of xylitol- and sorbitol-sweetened chewing gums on dental plaque. Proc Finn Dent Soc 78:128–133

    PubMed  CAS  Google Scholar 

  51. Scheinin A, Scheinin U, Glass RL, Kallio M-L, Söderling E (1981) Xylitol-induced changes of enamel micro-hardness in the human mouth. J Dent Res (Special Issue A, no 817) 60:514

    Google Scholar 

  52. Smits MT, Arends J (1988) Influence of extraoral xylitol and sucrose dippings on enamel demineralization in vivo. Caries Res 22:160–165

    Article  PubMed  CAS  Google Scholar 

  53. Arends J, Cristoffersen J, Schuthof J, Smits MT (1984) Influence of xylitol on demineralization of enamel. Caries Res 18:296–301

    PubMed  CAS  Google Scholar 

  54. Borggreven JMPM, van Dijk JWE, Driessens FCM (1981) Effect of mono- and divalent ions on diffusion and binding in bovine tooth enamel. Arch Oral Biol 26:663–669

    Article  PubMed  CAS  Google Scholar 

  55. Tarján I, Lindén LA (1982) Isotope studies on the permeability of the dental enamel to sucrose and xylitol. J Int Assoc Dent Child 13:53–56

    PubMed  Google Scholar 

  56. Williams G, Sallis JD (1982) Structural factors influencing the ability of compounds to inhibit hydroxyapatite formation. Calcif Tissue Int 34:169–177

    Article  PubMed  CAS  Google Scholar 

  57. Moreno EC, Varughese K, Hay DI (1979) Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Calcif Tissue Int 28:7–16

    Article  PubMed  CAS  Google Scholar 

  58. Bennick A (1976) The binding of calcium to a salivary phosphoprotein, protein A common to human parotid and submandibular secretions. Biochem J 155:163–169

    PubMed  CAS  Google Scholar 

  59. Bettelheim FA (1971) On the aggregation of a calcium precipitable glycoprotein from human submandibular saliva. Biochim Biophys Acta 236:702–705

    PubMed  CAS  Google Scholar 

  60. Belcourt A (1975) Etude d'une glycoproteine salivaire humaine precipitable par les ions calcium. Eur J Biochem 53:185–191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mäkinen, K.K., Söderling, E., Peacor, D.R. et al. Carbohydrate-controlled precipitation of apatite with coprecipitation of organic molecules in human saliva: Stabilizing role of polyols. Calcif Tissue Int 44, 258–268 (1989). https://doi.org/10.1007/BF02553760

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02553760

Key words

Navigation