Skip to main content
Log in

Interpolation type problems in the class of positive trigonometric polynomials of fixed order

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

This paper is devoted to a family of interpolation type problems for positive trigonometric polynomials of a given ordern. Via the Riesz-Fejér factorization theorem, they can be viewed as natural generalizations of the partial autocorrelation problem for discrete time signals of lengthn+1. The relevant variables for a specific problem are well-defined linear combinations of the coefficients of the underlying trigonometric polynomial. An efficient method is obtained to characterize the feasibility region of the problem, defined as the set of points having these variables as coordinates. It allows us to determine the boundary of that region by computing the extreme eigen values and the corresponding eigenvectors of certain well-defined Hermitian Toeplitz matrices of ordern+1. The method is an extension of one proposed by Steinhardt to solve the coefficient problem for positive cosine polynomials (which belongs to the family). Other interesting applications are the Nevanlinna-Pick interpolation problem for polynomial functions, and the simple interpolation problem for positive trigonometric polynomials. The close connection between the generalized Steinhardt method and classical techniques based on the polarity theorem for convex cones and on the Hahn-Banach extension theorem are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A] N. I. Akhiezer,The Classical Moment Problem, Oliver and Boyd, London, 1965.

    Google Scholar 

  • [BH] J. A. Ball and J. W. Helton, Interpolation problems of Pick-Nevanlinna and Loewner types for meromorphic matrix functions: parametrization of the set of all solutions,Integral Equations Operator Theory,9 (1986), 155–203.

    Article  MathSciNet  MATH  Google Scholar 

  • [B] J. P. Burg, Maximum Entropy Spectral Analysis, Ph. D. dissertation, Stanford University, Stanford, CA, 1975.

    Google Scholar 

  • [C] G. Cybenko, Moment problems and low rank Toeplitz approximations,Circuits Systems Signal Process.,1 (1982), 345–366.

    Article  MathSciNet  MATH  Google Scholar 

  • [D1] J. D. Davis,Circulant Matrices, Wiley, New York, 1979.

    MATH  Google Scholar 

  • [DG] P. Delsarte and Y. Genin, Spectral properties of finite Toeplitz matrices, inMathematical Theory of Networks and Systems (P. A. Fuhrmann, ed.), pp. 194–213, Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 1984.

    Chapter  Google Scholar 

  • [DGK1] P. Dolsarte, Y. Genin, and Y. Kamp, On the role of the Nevanlinna-Pick problem in circuit and system theory,Circuit Theory Appl.,9 (1981), 177–187.

    Google Scholar 

  • [DGK2] P. Delsarte, Y. Genin, and Y. Kamp, Parametric Toeplitz systems,Circuits Systems Signal Process.,3 (1984), 207–223.

    Article  MathSciNet  MATH  Google Scholar 

  • [DGK3] P. Delsarte, Y. Genin, and Y. Kamp, Zero location of lacunary prediction polynomials,IEEE Trans. Acoust. Speech Signal Process.,35 (1987), 1346–1347.

    Article  Google Scholar 

  • [DGKD] P. Delsarte, Y. Genin, Y. Kamp, and P. Van Dooren, Speech modelling and the trigonometric moment problem,Philips J. Res.,37 (1982), 277–292.

    MathSciNet  MATH  Google Scholar 

  • [D2] B. W. Dickinson, Two-dimensional Markov spectrum estimates need not exist,IEEE Trans. Inform. Theory,26 (1980), 120–121.

    Article  Google Scholar 

  • [F1] L. Fejér, Über trigonometrische Polynome,J. Reine Angew. Math.,146 (1915), 53–82.

    Google Scholar 

  • [F2] L. Fejér, Über eine Aufgabe der Harnackschen Potentialtheorie,Nachr. Ges. Wiss. Göttingen (1928), 109–117.

  • [FL] S. Friedland and R. Loewy, Subspaces of symmetric matrices with a multiple first eigenvalue,Pacific J. Math.,62 (1976), 389–399.

    MathSciNet  MATH  Google Scholar 

  • [G] T. T. Georgiou, Realization of power spectra from partial covariance sequences,IEEE Trans. Acoust. Speech Signal Process.,35 (1987), 438–449.

    Article  MATH  Google Scholar 

  • [GG] R. K. Goodrich and K. E. Gustalson, Spectral approximation,J. Approx. Theory,48 (1986), 272–293.

    Article  MathSciNet  Google Scholar 

  • [GS] U. Grenander and G. Szegö,Toeplitz Forms and Their Applications, University of California Press, Berkeley, CA, 1958.

    MATH  Google Scholar 

  • [J] C. R. Johnson, Numerical determination of the field of values of a general complex matrix,SIAM J. Numer. Anal.,15 (1978), 595–602.

    Article  MathSciNet  MATH  Google Scholar 

  • [KMS] M. Kac, W. L. Murdock, and G. Szegö, On the eigen-values of certain Hermitian forms,J. Rational Mech. Anal.,2 (1953), 767–800.

    MathSciNet  Google Scholar 

  • [K] G. Köthe,Topological Vector Spaces 1, Springer-Verlag, Berlin, 1969.

    Google Scholar 

  • [LM] S. W. Lang and J. H. McClellan, Spectral estimation for sensor arrays,IEEE Trans. Acoust. Speech Signal Process.,31 (1983), 349–358.

    Article  MATH  Google Scholar 

  • [M] K. N. Majindar, Linear combinations of Hermitian and real symmetric matrices,Linear Algebra Appl.,25 (1979), 95–105.

    Article  MathSciNet  Google Scholar 

  • [R1] W. Rudin, The extension problem for positive-definite functions,Illinois J. Math.,7 (1963), 532–539.

    MathSciNet  MATH  Google Scholar 

  • [R2] S. Ruscheweyh, Non-negative trigonometric polynomials with constraints,Z. Anal. Anwendungen,5 (1986), 169–177.

    MathSciNet  MATH  Google Scholar 

  • [S1] S. Sarason, Generalized interpolation inH ,Trans. Amer. Math. Soc.,127 (1967), 179–203.

    Article  MathSciNet  MATH  Google Scholar 

  • [S2] A. O. Steinhardt, Correlation matching by finite length sequences,IEEE Trans. Acoust. Speech Signal Process.,36 (1988), 545–559.

    Article  MathSciNet  MATH  Google Scholar 

  • A. O. Steinhardt, The partial realization problem for moving average models,Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, New York, 1988, pp. 2360–2363.

  • [SM] A. O. Steinhardt and J. Makhoul, On the autocorrelation of finite length sequences,IEEE Trans. Acoust. Speech Signal Process.,33 (1985), 1516–1520.

    Article  Google Scholar 

  • [SW] J. Stoer and C. Witzgall,Convexity and Optimization in Finite Dimensions I, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  • [S4] O. Szàsz, Über harmonische Funktionen undL-Formen,Math. Z.,1 (1918), 149–162.

    Article  MathSciNet  Google Scholar 

  • [S5] G. Szegö, Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen,Math. Ann.,96 (1927), 601–632.

    Article  MathSciNet  MATH  Google Scholar 

  • [T1] O. Taussky, Positive-definite matrices, inInequalities (O. Shisha, ed.), pp. 309–319, Academic Press, New York, 1967.

    Google Scholar 

  • [T2] A. E. Taylor,Introduction to Functional Analysis, Wiley, New York, 1964.

    Google Scholar 

  • [U1] F. Uhlig, A recurring theorem about pairs of quadratic forms and extensions: a survey,Linear Algebra Appl.,25 (1979), 219–237.

    Article  MathSciNet  MATH  Google Scholar 

  • [U2] F. Uhlig, The field of values of a complex matrix, an explicit description in the 2 × 2 case,SIAM J. Algebraic Discrete Methods,6 (1985), 541–545.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delsarte, P., Genin, Y. & Kamp, Y. Interpolation type problems in the class of positive trigonometric polynomials of fixed order. Math. Control Signal Systems 2, 171–185 (1989). https://doi.org/10.1007/BF02551820

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551820

Key words

Navigation