Skip to main content
Log in

Transform information: A symmetry breaking measure

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A connection between two fundamental concepts of information and symmetry breaking (SB) is established. A concept called transform information (TI) is introduced. The known information measures (Hartley, von Neumann-Shannon-Wiener, Fisher informations, Renyi entropies) can be derived as (or mathematically expressed by) the particular forms of TI for certain transforms of a physical systems (when they are described by the probability measures). As TI is zero when the system is invariant under respective transform, it can be considered, when nonzero, as a quantitative SB measure in the system under study. The classical information measures that are derived from TI also can be perceived as SB measures. This fact is a base for assigning a sense to information. The concept of TI is extended to the cases when systems are described without the use of probability concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl,Symmetry (Princeton University Press, 1952).

  2. E. P. Wigner,Symmetries and Reflections (Indiana University Press, Bloomington, 1967).

    Google Scholar 

  3. Mind and brain. Special issue ofSci. Am. 267, N3, (1992).

  4. N. Wiener,Cybernetics or Control and Communication in The Animal and The Machine (M.I.T. Press and Wiley, 1961).

  5. M. Kac,Probability and Related Topics in Physical Sciences (Interscience, New York, 1959).

    MATH  Google Scholar 

  6. A. N. Kolmogorov,The Basic Concepts of Probability Theory (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  7. S. Kullback and R. A. Leibler,Ann. Math. Stat. 22, 79 (1951).

    MathSciNet  MATH  Google Scholar 

  8. S. Kullback,Information Theory and Statistics (Wiley and Chapman & Hall, New York, London, 1959).

    MATH  Google Scholar 

  9. R. L. Stratanovich,Information Theory (Sov. Radio, Moscow, 1975) [in Russian].

    Google Scholar 

  10. I. Prigogine,From Being to Becoming. Time and Complexity in the Physical Sciences (Freeman, San Francisko, 1980).

    Google Scholar 

  11. I. Prigogine and I. Stengers,Order out of Chaos. Man's New Dialog with Nature (Heinemann, London, 1984).

    Google Scholar 

  12. J. S. Nicolis,Dynamics of Hierarchical Systems. An Evolutionary Approach (Springer, Berlin, 1986).

    MATH  Google Scholar 

  13. G. Nicolis and I. Prigogine,Exploring Complexity. An Introduction (Freeman, New York, 1989).

    Google Scholar 

  14. H. Haken,Information and Self-Organization. A Macroscopic Approach to Complex Systems (Springer, Berlin, 1988).

    MATH  Google Scholar 

  15. I. Prigogine, and I. Stengers,Time, Chaos, Quantum, (Progress, Moscow, 1994) [in Russian].

    Google Scholar 

  16. A. A. Kharkevich, Information theory. Image recognition (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  17. G. V. Vstovsky,Phys. Rev. E 51, 975 (1995).

    Article  ADS  Google Scholar 

  18. B. R. Frieden,Phys. Rev. A 41, 4265 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  19. B. R. Frieden,Physica. A 198, 262 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  20. B. R. Frieden,Found. Phys. 21, 757 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  21. B. R. Frieden, InAdvanced Imaging and Electron Physics P. W. Hawkes, ed. (Academic Press, Orlando, 1994), Vol. 90, pp. 123–204.

    Google Scholar 

  22. B. R. Frieden,Physica A 180, 359 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  23. B. R. Frieden and B. H. Soffer,Phys. Rev. E 52, 2274 (1995).

    Article  ADS  Google Scholar 

  24. B. R. Frieden and W. J. Cocke,Phys. Rev. E 54, 257 (1996).

    Article  ADS  Google Scholar 

  25. R. A. Fischer,Proc. Cambridge Philos. Soc. 22, 700 (1925).

    Article  Google Scholar 

  26. P. J. Olver,Applications of Lie Groups to Differential Equations (Springer, New York, 1986).

    MATH  Google Scholar 

  27. B. B. Mandelbrot, InRandom Fluctuations and Pattern Growth: Experiments and Models. H. E. Stanley and N. Ostrowsky, eds. (Kluwer Academic, Dordrecht, 1988).

    Google Scholar 

  28. H. G. E. Hentschel and I. Procaccia,Physica D 8, 435 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. T. C. Halseyet al., Phys. Rev. A 33, 1141 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  30. J. L. McCauley,Int. J. Mod. Phys. B 3, 821 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  31. G. Paladin and A. Vulpiani,Phys. Rep. 156, 147 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Gionaet al., J. Phys. A 24, 367 (1991).

    Article  ADS  MATH  Google Scholar 

  33. T. Vicsek,Physica A 168, 490 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  34. G. V. Vstovsky,Phys. Lett. A 168, 41 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  35. G. V. Vstovsky, I. J. Bunin, and A. G. Kolmakovet al., Dokl. RAS, Ser. Phys. 343, 613 (1995).

    Google Scholar 

  36. G. V. Vstovsky and I. Zh. Bunin,J. Adv. Mater. 1, 230 (1994).

    Google Scholar 

  37. P. Grassberger, InChaos in Astrophysics, J. R. Buchleret al., eds. (Reidel, Dortrecht, 1985).

    Google Scholar 

  38. M. H. Jensen, L. P. Kadanoff, and I. Procaccia,Phys. Rev. A 36, 1409 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  39. M. G. Cosenza and J. B. Swift,Phys. Rev. A 41, 6615 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Chhambra and R. V. Jensen,Phys. Rev. Lett. 62, 1327 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  41. C. Meneveau and A. B. Chhambra,Physica A 164, 564 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Grassberger, R. Badii, and A. Politi,J. Stat. Phys. 51, 135 (1988).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. B. Hede, J. Kortesz, and T. Vicsek,J. Stat. Phys. 64, 829 (1991).

    Article  MATH  ADS  Google Scholar 

  44. D. Katzen and I. Procaccia,Phys. Rev. Lett. 58, 1169 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  45. M. J. Feigenbaum,J. Stat. Phys. 46, 919 (1987).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. P. Stepfalusy, T. Tel, A. Csordas, and Z. Kovacs,Phys. Rev A 36, 3525 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  47. T. Bohr and M. H. Jensen,Phys. Rev. A 36, 4904 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Lee, P. Alsrom, and H. E. Stanley,Phys. Rev. A 39, 6545 (1989).

    Article  ADS  Google Scholar 

  49. R. Rangel and L. E. Guerrero,Phys. Rev. A 43, 669 (1991)

    Article  ADS  Google Scholar 

  50. L. Brillouin,Scientific Uncertainty and Information (Academic Press, New York-London, 1964).

    MATH  Google Scholar 

  51. E. T. Jaynes,Phys. Rev. 106, 620 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  52. E. T. Jaynes,Phys. Rev. 108, 171 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Tribus,J. Appl. Mech. 28, 1 (1961).

    MathSciNet  Google Scholar 

  54. M. Tribuset al., J. Appl. Mech. 28, 465 (1961).

    MathSciNet  Google Scholar 

  55. P. Chambadal,Evolution et applications du concept d'entropy (Dunod, Paris, 1963).

    Google Scholar 

  56. R. P. Feynman and A. R. Gibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  57. L. H. Ryder,Quantum Field Theory (Cambridge Univ. Press, 1985).

  58. E. Seiler,Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  59. J. B. Kogut,Rev. Mod. Phys. 51, 661 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  60. J. M. Drouffe and C. Itzykson,Phys. Rep. 38C, 133 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Dimopoulos, S. Raby, and E. Wilczek,Phys. Today 44, No. 10, 25 (1991).

    Google Scholar 

  62. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,Solitons and Nonlinear Wave Equations (Academic Press, London, 1984).

    Google Scholar 

  63. R. C. Tolman,Principles of Statistical Mechanics (Clarendon Press, Oxford, England, 1938).

    Google Scholar 

  64. F. Auerbach,Ectropism and Physical Theory of Life (Obrasovanie, Saint Petersburgh, 1911) [in Russian].

    Google Scholar 

  65. F. Auerbach,The Queen of the World and Her Shadow. Energy and Ectropy (Nauchnoe Knigoisdatel'stvo, Petrograd, 1917) [in Russian].

    Google Scholar 

  66. H. R. Branson, In(Essays on) Information Theory in Biology, H. Quastler, ed. (University of Illinois Press, Urbana, 1953). pp. 25–40.

    Google Scholar 

  67. Yu. P. Gutscho,Physics of Reliefography (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  68. E. De Boer,Phys. Rep. 203, 125 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vstovsky, G.V. Transform information: A symmetry breaking measure. Found Phys 27, 1413–1444 (1997). https://doi.org/10.1007/BF02551520

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551520

Keywords

Navigation