Skip to main content
Log in

Fluctuations in hadronic and nuclear collisions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We investigate several fluctuation effects in high-energy hadronic and nuclear collisions through the analysis of different observables. To introduce fluctuations in the initial stage of collisions, we use the interacting gluon model (IGM) modified by the inclusion of the impact parameter. The inelasticity and leading-particle distributions follow directly from this model. The fluctuation effects on rapidity distributions are then studied using Landau's hydrodynamic model in one dimension. To investigage further the effects of the multiplicity fluctuation, we use the longitudinal phase-space model, with the multiplicity distribution calculated within the hydrodynamic model, and the initial conditions given by the IGM. Forward-backward correlation is obtained in this way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau,Izv. Akad. Nauk SSSR 17, 51 (1953); L. D. Landau and S. Z. Belenkij,Usp. Phys. Nauk 56, 309 (1956);Nuovo Cimento Suppl. 3, 15 (1956);Collected Papers of L. D. Landau, D. ter Haar ed. (Gordon & Breach, New York, 1965).

    Google Scholar 

  2. M. Namiki and C. Iso,Prog. Theor. Phys. 18, 591 (1957); C. Iso, K. Mori, and M. Namiki,Prog. Theor. Phys. 22, 403 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Namiki and S. Muroya, “Distribution-correlation functions of produced particles in high-energy nuclear collisions,” preprint WU-HEP-93-4; M. Namiki and S. Pascazio,Phys. Rep. 232, 301 (1993); see especially Subsection 9.4.

  4. S. Paiva, Y. Hama, and T. Kodama,Phys. Rev. C 55, 1455 (1997).

    Article  ADS  Google Scholar 

  5. Y. Hama and S. Paiva,Phys. Rev. Lett. 78, 3070 (1997).

    Article  ADS  Google Scholar 

  6. G. N. Fowler, R. M. Weiner, and G. Wilk,Phys. Rev. Lett. 55, 173 (1985); G. N. Fowler, F. Navarra, M. Plümer, A. Vourdas, R. M. Weiner, and G. Wilk,Phys. Rev. C 40, 1219 (1989).

    Article  ADS  Google Scholar 

  7. R. Castaldi and G. Sanguinetti,Annu. Rev. Part. Sci. 35, 351 (1985).

    Article  ADS  Google Scholar 

  8. S. Pokorski and L. van Hove,Acta Phys. Pol. B 5, 229 (1974).

    Google Scholar 

  9. Yu. M. Shabelski, R. M. Weiner, G. Wilk, and Z. Włodarczyk,J. Phys. G 18, 1281 (1992); Z. Włodarczyk,J. Phys. G 21, 281 (1995).

    Article  ADS  Google Scholar 

  10. W. Busza and A. S. Goldhaber,Phys. Lett. B 139, 235 (1984).

    Article  ADS  Google Scholar 

  11. R. C. Hwa,Phys. Rev. Lett. 52, 492 (1984).

    Article  ADS  Google Scholar 

  12. C.-Y. Wong,Phys. Rev. Lett. 52, 1393 (1984).

    Article  ADS  Google Scholar 

  13. J. Hüfner and A. Klar,Phys. Lett. B 145, 167 (1984).

    Article  ADS  Google Scholar 

  14. L. P. Csernai and J. I. Kapusta,Phys Rev. D 29, 2664 (1984);Phys. Rev. D 31, 2795 (1985).

    Article  ADS  Google Scholar 

  15. D. Bricket al., Phys. Lett. B 103, 241 (1981).

    Article  ADS  Google Scholar 

  16. M. Basileet al., Nuovo Cimento A 73, 329 (1983).

    Google Scholar 

  17. P. Capiluppiet al., Nucl. Phys. B 79, 189 (1974).

    Article  ADS  Google Scholar 

  18. S. L. C. Barrosoet al. “Inelasticity distributions of hadron-lead collisions in the energy region exceeding 1014 eV, estimated by thick lead emulsion chambers at Pamir,” submitted for publication inPhys. Rev. D.

  19. D. S. Bartonet al., Phys. Rev. D 27, 2580 (1983).

    Article  ADS  Google Scholar 

  20. I. M. Khalatnikov,Zh. Eksp. Teor. Fiz. 27, 529 (1954).

    Google Scholar 

  21. F. Cooper and G. Frye,Phys. Rev. D. 10, 186 (1974).

    Article  ADS  Google Scholar 

  22. K. S. Lee, U. Heinz, and E. Schnedermann,Z. Phys. C 48, 525 (1990).

    Article  Google Scholar 

  23. Y. Hama and F. S. Navarra,Z. Phys. C 53, 501 (1992).

    Article  Google Scholar 

  24. F. S. Navarra, M. C. Nemes, S. Paiva, and U. Ornik,Phys Rev. C 40, 1245 (1993).

    Google Scholar 

  25. F. Grassi, Y. Hama, and T. Kodama,Phys. Lett. B 355, 9 (1995);Z. Phys. C 73, 153 (1996).

    Article  ADS  Google Scholar 

  26. P. Carruthers and Minh Duong-Van,Phys. Rev. D,28, 130 (1983).

    Article  ADS  Google Scholar 

  27. M. Basileet al., Lett. Nuovo Cimento 41, 293 (1984).

    Google Scholar 

  28. M. Basileet al., Phys. Lett. B 92, 367 (1980);Nuovo Cimento A 65, 414 (1981);67, 53 (1982);79, 1 (1984);Lett. Nuovo Cimento 32, 210 (1981).

    Article  ADS  Google Scholar 

  29. W. Thoméet al., Nucl. Phys. B 129, 365 (1977).

    Article  ADS  Google Scholar 

  30. F. Cooper and E. Schönberg,Phys. Rev. D 8, 334 (1973).

    Article  ADS  Google Scholar 

  31. Y. Hama,Phys. Rev. D 19, 2623 (1979).

    Article  ADS  Google Scholar 

  32. Ames-Bologna-CERN-Dortmund-Heidelberg-Warsaw Collaboration, A. Breakstoneet al., Phys. Rev. D 30, 528 (1984).

    Article  ADS  Google Scholar 

  33. Y. Hama and M. Plümer,Phys. Rev. D 46, 160 (1992).

    Article  ADS  Google Scholar 

  34. S. Uhlig, I. Derado, R. Meinke, and H. Preissner,Nucl. Phys. B 132, 15 (1978).

    Article  ADS  Google Scholar 

  35. R. Hanbury Brown and R. Q. Twiss,Philos. Mag. Ser. 745, 663 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hama, Y., Kodama, T. & Paiva, S. Fluctuations in hadronic and nuclear collisions. Found Phys 27, 1601–1621 (1997). https://doi.org/10.1007/BF02551503

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551503

Keywords

Navigation