Skip to main content
Log in

Supermultiplicity and the relativistic Coulomb problem with arbitrary spin

  • Part II. Invited Papers Dedicated to Lawrence Biedenharn
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Hamiltonian for n relativistic electrons without interaction but in a Coulomb potential is well known. If in this Hamiltonian we take r u =r′, P u =P′ with u=1,2,..., n, we obtain a one-body problem in a Coulomb field, but the appearance of n of the α u , u=1,..., n, each of which corresponds to spin\(\tfrac{1}{2}\), indicates that we may have spins up to (n/2). We analyze this last problem first by denoting the 4×4 matrices α, β as direct products of 2×2 matrices which correspond to the ordinary spin, and a new concept, also related to the SU(2) group, which we call sign spin. In this new notation our problem depends on the sixteen generators of a U(4) group reduced along the chain Û(2)⊗Ŭ(2) sub-groups associated with the ordinary and sign spins. We now make a change of variables in our Hamiltonian so a term ε related to the frequency ω of an oscillator, which will be our variational parameter, appears in it, and later construct the full states of the problem with a harmonic oscillator of frequency 1 and ordinary and sign spin parts. Finally we obtain the matrix representation of our Hamiltonian with respect to the states mentioned and discuss the energy spectra of the problem where the partition {h} representing the irrep of U(4) and j the total angular momentum, take the values {h}=[1], j=\(\tfrac{1}{2}\); {h}=[11], j=0; {h}=[2], j=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. P. A. M. Dirac,The principles of Quantum Mechanics, (Oxford: Clarendon, Oxford, 1959), 4th ed., pp. 252–275.

    Google Scholar 

  2. P. A. M. Dirac,Proc. R. Soc. London A 155, 447 (1936). M. Fierz and W. Pauli,Proc. R. Soc. London A 173, 211 (1939). V. Bargmann and E. P. Wigner,Proc. Nat. Acad. Sci. USA 34, 211 (1948). N. Kemmer,Proc. R. Soc. London A, 73 (1939). P. M. Mathews and B. Vijayalakshmi,J. Math. Phys. 25, 1080 (1984). H. J. Bhabha,Rev. Mod. Phys. 21, 451 (1949). R. A. Krajcik and M. Nieto,Am. J. Phys. 45, 818 (1977). S. Weinberg,Phys. Rev. B 133, 1318 (1964). W. Fushchich, A. G. Nikitin, and W. M. Susloperov,Nuovo Cimento A 87, 415 (1985).

    Article  ADS  Google Scholar 

  3. M. Moshinsky and A. del Sol Mesa,J. Phys. A: Math. Gen. 29, 4217 (1996).

    Article  ADS  MATH  Google Scholar 

  4. M. Moshinsky and Yu. F. Smirnov,J. Phys. A: Math. Gen. 29, 6027 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. O. Barut and S. Komy,Fort. Phys. 33, 6 (1985), A. O. Barut and G. L. Strobel,Few-Body Systems 1, 167 (1986).

    MathSciNet  Google Scholar 

  6. M. Moshinsky and Yu. Smirnov, inSymmetry in Science IX, B. Gruber, ed. (Plenum, New York, 1997).

    Google Scholar 

  7. E. P. Wigner,Phys. Rev. 51, 106 (1937).

    Article  ADS  MATH  Google Scholar 

  8. M. Moshinsky and J. G. Nagel,Phys. Lett. 5, 173 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Moshinsky and C. Quesne,Phys. Lett. B 29, 482 (1971);J. Math. Phys. 11, 1631 (1970).

    Article  ADS  Google Scholar 

  10. M. Moshinsky,J. Math. Phys. 7, 691 (1966).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. M. Brunet and M. Resnikoff,J. Math. Phys. 11, 1474 (1970). K. T. Hecht and Sing Chin Pang,J. Math. Phys. 10, 1571 (1969). J. P. Draayer,J. Math. Phys. 11, 3225 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Moshinsky and Yu. F. Smirnov,The Harmonic Oscillator in Modern Physics (Harwood, New York, 1996), pp. 1, 3, 5.

    MATH  Google Scholar 

  13. M. E. Rose,Elementary Theory of Angular Momentum (Wiley, New York, 1957), p. 117, formula (6.21) and pp. 85–90.

    MATH  Google Scholar 

  14. M. Moshinsky and C. Quesne,Ann. Phys. (N.Y) 148, 462 (1983).

    Article  ADS  MATH  Google Scholar 

  15. P. Kramer and M. Moshinsky,Group Theory and Its Applications, Vol. 1, E. M. Loebl, ed. (Academic, New York, 1968), pp. 403–421.

    Google Scholar 

  16. T. Brody and M. Moshinsky,Tables of Transformation Brackets (Gordon & Breach, New York, 1967), pp. 125–175.

    Google Scholar 

  17. L. I. Schiff,Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968), pp. 485–488.

    Google Scholar 

  18. M. Moshinsky and A. del Sol Mesa.Can. J. Phys. 72, 453 (1994).

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

One of the authors of the present paper (M.M.) would like to express his deep appreciation of Larry Biedenharn, to whom this volume is dedicated. He first met Larry in the fifties and from then on benefited both from his friendship and his profound knowledge of group theory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moshinsky, M., del Sol Mesa, A. & Riquer, V. Supermultiplicity and the relativistic Coulomb problem with arbitrary spin. Found Phys 27, 1139–1157 (1997). https://doi.org/10.1007/BF02551438

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551438

Keywords

Navigation