Skip to main content
Log in

Scalar field in an arbitrary dimension from the standpoint of higher-spin Gauge theory

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We formulate the equations of motion of a free scalar field in the flat and AdS spaces of arbitrary dimension in the form of “higher-spin” covariant constancy conditions. The Klein-Gordon equation describes a nontrivial cohomology of a certain “σ_-complex.” The action principle for a scalar field is formulated in terms of the “higher-spin” covariant derivatives for an arbitrary mass in AdSd and for a nonzero mass in the flat space. The free-field part of the constructed action coincides with the standard first-order Klein-Gordon action, but the interaction part is different because of the presence of an infinite set of auxiliary fields, which do not contribute at the free level. We consider the example of Yang-Mills current interaction and show how the proposed action generates the pseudolocally exact form of the matter currents in AdSd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gervais and M. V. Saveliev, “Progress in classically solving ten-dimensional supersymmetric reduced Yang-Mills theories,” Preprint hep-th/9811108 (1998).

  2. M. A. Vasiliev, “Higher-spin gauge theories: Star-product and AdS space,” Preprint hep-th/9910096 (1999).

  3. M. A. Vasiliev,Int. J. Mod. Phys. D,5, 763 (1976); Preprint hep-th/9611024 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. A. Vasiliev,Phys. Lett. B,285, 225 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  5. E. S. Fradkin and M. A. vasiliev,Phys. Lett. B,189, 89 (1987);Nucl. Phys. B,291, 141 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. A. Vasiliev,Ann. Phys.,190, 59 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. E. Konstein and M. A. Vasiliev,Nucl. Phys. B,331, 475 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  8. S. F. Prokushkin and M. A. vasiliev,Phys. Lett. B,464, 53 (1999); Preprint hep-th/9906149 (1999); M. A. Vasiliev and S. F. Prokushkin,Theor. Math. Phys.,123, 415 (2000); Preprint hep-th/9907020 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. M. Klishevich,Class. Q. Grav.,16, 2915 (1999); Preprint hep-th/9812005 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  10. I. L. Buchbinder, D. M. Gitman, V. A. Krykhtin, and V. D. Pershin, “Equations of motion for massive spin-2 field coupled to gravity,” Preprint hep-th/9910188 (1999).

  11. M. A. Vasiliev,Fortschr. Phys.,35, 741 (1987).

    MathSciNet  Google Scholar 

  12. M. A. Vasiliev,Class. Q. Grav.,11, 649 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. F. Prokushkin and M. A. Vasiliev,Nucl. Phys. B,545, 385 (1999); Preprint hep-th/9806236 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  14. E. S. Fradkin and M. A. Vasiliev,Ann. Phys.,177, 63 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. E. Lopatin and M. A. Vasiliev,Mod. Phys. Lett. A,3, 257 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. V. Barabanshchikov, S. F. Prokushkin, and M. A. Vasiliev,Theor. Math. Phys.,110, 295 (1997); Preprint hep-th/9609034 (1996).

    Google Scholar 

  17. J. Maldacena, “The large-N limit of superconformal field theories and supergravity,” Preprint hep-th/9711200 (1997); S. Ferrara and C. Fronsdal, “Conformal Maxwell theory as a singleton field theory onADS 5, IIB branes, and duality,” Preprint hep-th/9712239 (1997); M. Gunaydin and D. Minic, “Singletons, doubletons, andM-theory,” Preprint hep-th/9802047 (1998); S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Preprint hep-th/9802109 (1998); E. Witten, “Anti-de Sitter space and holography,” hep-th/9802150 (1998); O. Aharony, S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, “Large-N field theories, string theory, and gravity,” hep-th/9905111 (1999).

  18. M. Green, J. Schwarz, and E. Witten,Superstring Theory, Vols. 1, 2, Cambridge Univ. Press, New York (1987).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 123, No. 2, pp. 323–344, May, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliev, M.A., Shaynkman, O.V. Scalar field in an arbitrary dimension from the standpoint of higher-spin Gauge theory. Theor Math Phys 123, 683–700 (2000). https://doi.org/10.1007/BF02551402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551402

Keywords

Navigation