Skip to main content
Log in

Geodesic equivalence of metrics as a particular case of integrability of geodesic flows

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the recently found connection between geodesically equivalent metrics and integrable geodesic flows. If two different metrics on a manifold have the same geodesics, then the geodesic flows of these metrics admit sufficiently many integrals (of a special form) in involution, and vice versa. The quantum version of this result is also true: if two metrics on one manifold have the same geodesics, then the Beltrami Laplace operator Δ for each metric admits sufficiently many linear differential operators communiting with Δ. This implies that the topology of a manifold with two different metrics with the same geodesics must be sufficiently simple. We also have that the nonproportionality of the metrics at a point implies the nonproportionality of the metrics at almost all points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Dini,Ann. Math. Ser. 2,3, 269–293 (1869).

    Google Scholar 

  2. T. Levi-Civita,Ann. Mat. Ser. 2 a,24, 255–300 (1896).

    Google Scholar 

  3. A. V. Aminova,Russ. Math. Surv.,48, 105–160 (1993).

    Article  MathSciNet  Google Scholar 

  4. J. Mikesh, “Geometric representations of Riemann and affine spaces,” in:Results of Science and Technology: Contemporary Mathematics and Its Applications: Thematic Reviews (N. M. Ostianu, ed.) [in Russian], Vol. 11,Geometry 2, VINITI, Moscow (1994), pp. 112–148; English transl.J. Math. Sci.,78, No. 3 (1996).

    Google Scholar 

  5. J. Mikesh,Sov. Math. Dokl.,39, 315–317 (1989).

    MathSciNet  Google Scholar 

  6. E. Beltrami,Ann. Mat.,1, No. 7 (1865).

  7. E. Beltrami,Ann. Mat.,2, No. 2, 232–255 (1868).

    Google Scholar 

  8. P. J. Topalov and V. S. Matveev, “Geodesic equivalence and integrability,” Preprint Math. No. 74, MPI, Bonn (1998).

    Google Scholar 

  9. E. T. Whittaker,A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Univ. Press, Cambridge (1937).

    MATH  Google Scholar 

  10. I. A. Taimanov,Math. USSR, Izv.,30, 403–409 (1988).

    Article  MathSciNet  Google Scholar 

  11. P. J. Topalov,Russ. Acad. Sci. Sb. Math.,188, 307–326 (1997).

    MathSciNet  Google Scholar 

  12. N. S. Sinyukov,Sov. Math. Dokl.,7, 1004–1006 (1966).

    Google Scholar 

  13. S. Tabachnikov, “Projectively equivalent metrics, exact transverse line field, and the geodesic flow on the ellipsoid,” Preprint UofA-R-161, Univ. of Arkansas, Fayetteville (1998).

    Google Scholar 

  14. A. V. Brailov,Math. USSR, Izv.,29, 19–31 (1987).

    Article  Google Scholar 

  15. P. J. Topalov, “Hierarchy of integrable geodesic flows,” Preprint Math. No. 115, MPI, Bonn (1998).

    Google Scholar 

  16. A. V. Bolsinov, A. T. Fomenko, and V. S. Matveev, “Riemannian metrics with integrable geodesic flows on surfaces: local and global geometry,” Preprint Math. No. 122, MPI, Bonn (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In memory of Mikhail Vladimirovich Saveliev

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 123, No. 2, pp. 285–293, May, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveev, V.S., Topalov, P.J. Geodesic equivalence of metrics as a particular case of integrability of geodesic flows. Theor Math Phys 123, 651–658 (2000). https://doi.org/10.1007/BF02551397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551397

Keywords

Navigation