Skip to main content
Log in

Linear stabilizability of planar nonlinear systems

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

This paper considers scalar-input two-dimensional nonlinear systems for which the linearization, has a simple zero uncontrollable eigenvalue. The existence of linear stabilizing feedback laws is investigated, using center manifold techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Abed and J. H. Fu. Local feedback stabilization and bifurcation control, II: stationary bifurcation,Systems Control Lett.,8 (1987), 467–473.

    Article  MathSciNet  Google Scholar 

  2. D. Aeyels. Stabilization of a class of nonlinear systems by a smooth feedback control,Systems Control Lett.,5 (1985), 289–294.

    Article  MathSciNet  Google Scholar 

  3. A. Bacciotti The local stabilizability problem for nonlinear systems,IMA J. Math. Control Inform.,5 (1988), 27–39.

    Article  MathSciNet  Google Scholar 

  4. S. P. Banks. Stabilizability of finite-and infinite-dimensional bilinear systems,IMA J. Math. Control Inform.,3 (1986), 255–271.

    Article  Google Scholar 

  5. S. Bethash and S. Sastry. Stabilization of nonlinears systems with uncontrollable linearization,IEEE Trans. Automat. Control,33 (1988), 585–591.

    Article  MathSciNet  Google Scholar 

  6. R. W. Brockett, Asymptotic stability and feedback stabilization, inDifferential Geometric Control Theory (R. W. Brockett, R. S. Millmann, and H. J. Sussmann, eds.), pp. 181–191, Birkhauser, Boston, 1983.

    Google Scholar 

  7. J. Carr,Applications of Centre Manifold Theory, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  8. G. T. Flowers and B. H. Tongue. Nonlinear rotorcraft analysis using symbolic manipulation.Appl. Math. Modelling,12 (1988), 154–160.

    Article  Google Scholar 

  9. W. Hahn,Stability of Motion, Springer-Verlag, Berlin, 1967.

    MATH  Google Scholar 

  10. R. Marino. Feedback stabilization of single-input nonlinear systems,Systems Control Lett.,10, (1988), 201–206.

    Article  MathSciNet  Google Scholar 

  11. Microsoft muMATH® Symbolic Mathematics Package, MS DOS Version 4.0 6(c) by The Soft Warehouse, 1979, 1980, 1981, 1982, and 1983.

  12. R. H. Rand and D. Armbruster,Perturbation Methods, Bifurcation Theory and Computer Algebra, Springer-Verlag, New York, 1987.

    MATH  Google Scholar 

  13. E. D. Sontag and H. J. Sussmann, Remarks on continuous feedback,Proceeding of the 19thIEEE Conference on Decision and Control, Albuquerque, NM, 1980, pp. 916–921.

  14. H. J. Sussmann. Subanalytic sets and feedback control,J. Differential Equations,31 (1979), 31–52.

    Article  MathSciNet  Google Scholar 

  15. J. Tsinias. Stabilization of affine in control nonlinear systems,Nonlinear Anal. TMA,12 (1988), 1283–1296.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the Ministero della Pubblica Istruzione, Italia (Progetti di ricerca, di interesse nazionale).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacciotti, A., Boieri, P. Linear stabilizability of planar nonlinear systems. Math. Control Signal Systems 3, 183–193 (1990). https://doi.org/10.1007/BF02551367

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551367

Key words

Navigation