Skip to main content
Log in

Robust stability and performance via fixed-order dynamic compensation with guaranteed cost bounds

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

A feedback control-design problem involving structured plant parameter uncertainties is considered. Two robust control-design issues are addressed. The Robust Stability Problem involves deterministic bounded structured parameter variations, while the Robust Performance Problem includes, in addition, a quadratic performance criterion averaged over stochastic disturbances and maximized over the admissible parameter variations. The optimal projection approach to fixed-order, dynamic compensation is merged with the guaranteed cost control approach to robust stability and performance to obtain a theory of full- and reduced-order robust control design. The principle result is a sufficient condition for characterizing dynamic controllers of fixed dimension which are guaranteed to provide both robust stability and performance. The sufficient conditions involve a system of modified Riccati and Lyapunov equations coupled by an oblique projection and the uncertainty bounds. The full-order result involves a system of two modified Riccati equations and two modified Lyapunov equations coupled by the uncertainty bounds. The coupling illustrates the breakdown of the separation principle for LQG control with structured plant parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Albert, Conditions for positive and nonnegative definiteness in terms of pseudo inverse,SIAM J. Appl. Math.,17 (1969), 434–440.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. D. O. Anderson and J. B. Moore,Linear Optimal Control, Prentice-Hall, Englewood Cliffs, NJ, 1970.

    Google Scholar 

  3. B. R. Barmish, Necessary and sufficient conditions for quadratic stabilizability of an uncertain linear system,J. Optim. Theory Appl.,46 (1985), 399–408.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. R. Barmish, M. Corless, and G. Leitmann. A new class of stabilizing controllers for uncertain dynamical systems,SIAM J. Control. Optim.,21 (1983), 246–255.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. S. Bernstein, Robust static and dynamic output-feedback stabilization: deterministic and stochastic perspectives,IEEE Trans. Automat. Control,32 (1987), 1076–1084.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. S. Bernstein and S. W. Greeley, Robust controller synthesis using the maximum entropy design equationsIEEE Trans. Automat. Control,31 (1986), 362–364.

    Article  MATH  Google Scholar 

  7. D. S. Bernstein and S. W. Greeley, Robust output-feedback stabilization: deterministic and stochastic perspectives,Proceedings of the American Control Conference, Seattle, WA, June 1986, pp. 1818–1826.

  8. D. S. Bernstein and W. M. Haddad. The optimal projection equations with Petersen-Hollot bounds: robust stability and performance via fixed-order dynamic compensation for systems with structured real-valued parameter uncertainty,IEEE Trans. Automat. Control,33 (1988), 578–582.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. S. Bernstein and W. M. Haddad. Robust Stability and Performance Analysis for State Space Systems via Quadratic Lyapunov Bounds.,SIAM J. Matrix Anal. (to appear).

  10. D. S. Bernstein and D. C. Hyland. The optimal projection equations for finite-dimensional fixed-order dynamic compensation of infinite-dimensional systems,SIAM J. Control. Optim.,24 (1986), 122–151.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. P. Bhattacharyya, J. W. Howze, and L. H. Keel. Stabilization of linear systems with fixed-order controllers,Linear Algebra Appl.,98 (1988), 57–77.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. W. Brewer. Kronecker products and matrix calculus in system theory,IEEE Trans. Circuits and Systems,25 (1978), 772–781.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. L. Campbell and C. D. Meyer, Jr.,Generalized Inverses of Linear Transformations, Pitman, London, 1979.

    MATH  Google Scholar 

  14. S. S. L. Chang and T. K. C. Peng. Adaptive guaranteed cost control of systems with uncertain parameters,IEEE Trans. Automat. Control.,17 (1972), 474–483.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Cheung and S. Yurkovich, On the robustness of MEOP design versus asymptotic LQG synthesis,IEEE Trans. Automat. Control,33 (1988), 1061–1065.

    Article  MATH  Google Scholar 

  16. M. Corless and G. Leitmann. Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamical systems,IEEE Trans. Automat. Control.,26 (1981), 1139–1144.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. C. Doyle, Guaranteed margins for LQG regulators,IEEE Trans. Automat. Control,23 (1978), 756–757.

    Article  Google Scholar 

  18. M. Eslami and D. L. Russell. On stability with large parameter variations: stemming from the direct method of Lyapunov,IEEE Trans. Automal. Control,25 (1980), 1231–1234.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. R. Galimidi and B. R. Barmish. The constrained Lyapunov problem and its application to robust output feedback stabilization,IEEE Trans. Automat. Control,31 (1986), 410–419.

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L-error bounds,Internat. J. Control,39 (1984), 1115–1193.

    MathSciNet  MATH  Google Scholar 

  21. S. W. Greeley and D. C. Hyland, Reduced-order compensation: LQG reduction versus optimal projection using a homotopic continuation method,Proceedings of the 26th IEEE Conference on Decision and Control, Los Angeles, CA, December 1987, pp. 742–747.

  22. A. Gruzen, Robust Reduced Order Control of Flexible Structures, C. S. Draper Laboratory Report No. CSDL-T-900, April 1986.

  23. A. Gruzen and W. E. Vander Velde, Robust reduced-order control of flexible structures using the optimal projection/maximum entropy design methodology,AIAA Guidance Navigation, and Control Conference, Williamsburg, VA, August 1978.

  24. W. M. Haddad, Robust Optimal Projection Control-System Synthesis, Ph.D. Dissertation, Department of Mechanical Engineering, Florida Institute of Technology, Melbourne, FL, March 1987.

    Google Scholar 

  25. D. C. Hyland and D. S. Bernstein. The optimal projection equations for fixed-order dynamic compensation,IEEE Trans. Automat. Control,29 (1984), 1034–1037.

    Article  MathSciNet  MATH  Google Scholar 

  26. O. I. Kosmidou and P. Bertrand. Robust-controller design for systems with large parameter variations,Internat. J. Control,45 (1987), 927–938.

    MATH  Google Scholar 

  27. L. H. Keel, S. P. Bhattacharyya, and J. W. Howze. Robust control with structured perturbations,IEEE Trans. Automat. Control.,33 (1988), 68–78.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. T. Kabamba R. W. Longman, and S. Jian-Guo. A homotopy approach to the feedback stabilization of linear systems,J. Guidance Control Dynamics,10 (1987), 422–432.

    MATH  Google Scholar 

  29. G. Leitmann Guaranteed asymptotic stability for a class of uncertain linear dynamical systems,J. Optim. Theory. Appl.,27 (1979), 99–106.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Mariton and R. Bertrand. A homotopy algorithm for solving coupled Riccati equations,Optim. Control. Appl. Methods,6 (1985), 351–357.

    MathSciNet  Google Scholar 

  31. I. R. Petersen and C. V. Hollot. A Riccati equation approach to the stabilization of uncertain systems,Automatica,22 (1986), 397–411.

    Article  MathSciNet  MATH  Google Scholar 

  32. C. R. Rao and S. K. Mitra,Generalized Inverse of Matrices and Its Applications Wiley, New York, 1971.

    MATH  Google Scholar 

  33. S. Richter, A homotopy algorithm for solving the optimal projection equations for fixed-order dynamic compensation: existence, convergence and global optimality,Proceeding of the American Control Conference, Minneapolis, MN, June 1987, pp. 1527–1531.

  34. S. Richter, Reduced-order control design via the optimal projection approach: a homotopy algorithm for global optimality,Proceedings of the Sixth VP1 & SU Symposium on Dynamics and Control of Large Space Structures (L Meirovitch, ed.), Blacksburg, VA, June 1987, pp. 17–30.

  35. J. S. Thorp and B. R. Barmish. On guaranteed stability of uncertain linear systems via linear control,J. Optim. Theory Appl.,35 (1981), 559–579.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Vinkler and L. J. Wood. Multistep guaranteed cost control of linear systems with uncertain parameters,J. Guidance and Control,2 (1979), 449–456.

    Article  MATH  Google Scholar 

  37. W. M. Wonham,Linear Multivariable Control: A Geometric Approach, 2nd edn., Springer-Verlag, New York, 1979.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Air Force Office of Scientific Research under Contract F49620-86-C-0002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernstein, D.S., Haddad, W.M. Robust stability and performance via fixed-order dynamic compensation with guaranteed cost bounds. Math. Control Signal Systems 3, 139–163 (1990). https://doi.org/10.1007/BF02551365

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551365

Key words

Navigation