Skip to main content
Log in

Optimal control of large space structures governed by a coupled system of ordinary and partial differential equations

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of optimal regulation of large space structures in the presence of flexible appendages. For simplicity of presentation, we consider a spacecraft consisting of a rigid bus and a flexible beam. The complete dynamics of the system is given by a coupled set of ordinary and partial differential equations. We show that the solution of this hybrid system is defined in a product space of appropriate finite- and infinite-dimensional spaces. We develop necessary conditions for determining the control torque and forces for optimal regulation of attitude maneuvers of the satellite along with simultaneous suppression of elastic vibrations of the flexible beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. U. Ahmed, Optimal control of generating policies in a power system governed by second-order hyperbolic partial differential equations,SIAM J. Control Optim.,15 (1977), 1016–1033.

    Article  MATH  Google Scholar 

  2. N. U. Ahmed, Necessary conditions of optimality for a class of second-order hyperbolic systems with spatially dependent controls in the coefficients,J. Optim. Theory Appl.,38 (1982), 423–446.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. U. Ahmed, Distributed parameter systems, inEncyclopedia of Physical Science and Technology, Vol. 4, pp. 362–385, Academic Press, New York, 1987.

    Google Scholar 

  4. N. U. Ahmed and K. L. Teo,Optimal Control of Distributed Parameter Systems, North-Holland, New York, 1981.

    MATH  Google Scholar 

  5. R. Araya, A controllability—stabilizability result for the SCOLE,Proceedings of the NASA SCOLE Workshop, Langley Research Center, Hampton, VA, December, 1984.

    Google Scholar 

  6. A. Arbel and N. K. Gupta, Robust colocated control for large flexible structures,J. Guidance and Control,4 (1981), 480–486.

    MATH  Google Scholar 

  7. A. V. Balakrishnan, A Mathematical Formulation of the SCOLE Control Problem, NASA Report NASA CR-17258, Langley Research Center, Hampton, VA, 1985.

    Google Scholar 

  8. S. K. Biswas and N. U. Ahmed, Modelling of flexible spacecraft and their stabilization,Internat. J. Systems Sci.,16 (1985), 535–551.

    MathSciNet  MATH  Google Scholar 

  9. S. K. Biswas and N. U. Ahmed, Stabilization of a class of hybrid systems arising in flexible spacecraft,J. Optim. Theory Appl.,50 (1986) 83–108.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. K. Biswas and R. D. Klafter, Dynamic modeling and optimal control of flexible robotic manipulators,Proceedings of the 1988 IEEE Conference on Robotics and Automation, Philadelphia, May 1988.

  11. J. A. Breakwell, Optimal feedback slewing of flexible spacecraft,J. Guidance and Control,4 (1981), 472–479.

    Google Scholar 

  12. J. L. Lions,Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

    MATH  Google Scholar 

  13. J. L. Lions and E. Magenes,Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  14. L. Meirovitch, Stability of a spinning body containing elastic parts via Lyapunov's direct method,AIAA J.,8 (1970), 1193–1200.

    MATH  Google Scholar 

  15. L. Meirovitch, A method of Lyapunov stability analysis of force-free dynamical systems,AIAA J.,9 (1971) 1695–1700.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Meirovitch, Modal-space control of large flexible spacecraft possessing ignorable coordinates,J. Guidance and Control,3 (1980), 569–577.

    MATH  Google Scholar 

  17. D. Schaechter, Optimal local control of flexible structures,J. Guidance and Control 4 (1981), 22–26.

    Article  Google Scholar 

  18. S. B. Skaar, L. Tang, and I. Yalda-Moosabad, On-off control of flexible satellites,J. Guidance and Control,9 (1986), 507–510.

    Google Scholar 

  19. K. L. Teo and Z. S. Wu,Computational Methods for Optimizing Distributed Systems, Academic Press, New York, 1984.

    MATH  Google Scholar 

  20. A. Thowsen and W. R. Perkins, Observability conditions for a class of mixed distributed and lumped parameter systems,Automatica,12 (1976), 273–275.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. D. Turner and H. M. Chun, Optimal distributed control of a flexible spacecraft during a large-angle maneuver,J. Guidance and Control,7 (1984), 257–264.

    Google Scholar 

  22. J. D. Turner and J. L. Junkins, Optimal large-angle single-axis rotational maneuver of flexible spacecraft,J. Guidance and Control,3 (1980), 578–585.

    MathSciNet  MATH  Google Scholar 

  23. P. K. C. Wang, Control of distributed parameter systems, inAdvances in Control Systems Vol. 1 (C. T. Leondes, ed.), pp. 70–170, Academic Press, New York, 1964.

    Google Scholar 

  24. P. K. C. Wang, On the stability of equilibrium of a mixed distributed and lumped parameters control system,Internat. J. Control,3 (1966), 139–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S.K., Ahmed, N.U. Optimal control of large space structures governed by a coupled system of ordinary and partial differential equations. Math. Control Signal Systems 2, 1–18 (1989). https://doi.org/10.1007/BF02551358

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551358

Key words

Navigation