Skip to main content
Log in

Robust stabilization for multivariable systems with constrained control: Frequency domain approach

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

In this paper, robust stabilization conditions based on theH -norm are derived for multivariable feedback systems under perturbations and constrained control. The parametrized controller of Youlaet al. is employed to treat this problem. In addition, a necessary and sufficient condition is derived for the solvability of the synthesis problem for a controller which achieves robust stability. Finally, a design procedure is proposed for selecting the parameters of the robust controller, and an illustrative example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Åström, Robustness of a design method based on assignment of poles and zeros,IEEE Trans. Automat. Control,25 (1980), 588–591.

    Article  MathSciNet  Google Scholar 

  2. V. M. Adamjan, D. Z. Arov, and M. G. Krein, Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem,Math. USSR-Sb.,15 (1971), 31–73.

    Article  Google Scholar 

  3. K. J. Åström and B. Wittenmark,Computer Control System, Englewood Cliffs, NJ, 1984.

  4. B. C. Chang and J. B. Pearson, Optimal disturbance reduction in linear multivariable systems,IEEE Trans. Automat. Control,29 (1984), 880–888.

    Article  MathSciNet  Google Scholar 

  5. B. S. Chen and C. C. Chiang, Robust stabilizer synthesis for feedback systems containing time-varying nonlinear perturbations,IEEE Trans. Automat. Control,31 (1986), 768–771.

    Article  Google Scholar 

  6. B. S. Chen and C. C. Kung, The robustness optimization of a multivariable feedback systems in Hankel norm space,Internat. J. Control,39 (1984), 1211–1228.

    MathSciNet  Google Scholar 

  7. B. S. Chen and C. C. Wong, Robust linear control design: time domain approach,IEEE Trans. Automat. Control,32 (1987), 161–164.

    Article  Google Scholar 

  8. M. J. Chen and C. A. Desoer, Necessary and sufficient conditions for robust stability of linear distributed feedback systems,Internat. J. Control,35 (1982), 255–267.

    MathSciNet  Google Scholar 

  9. J. B. Cruz, Jr., J. S. Freudenberg, and D. P. Loose, A relationship between sensitivity and stability of multivariable feedback systems,IEEE Trans. Automat. Control,26 (1981), 66–74.

    Article  Google Scholar 

  10. P. Delsarte, Y. Genin, and Y. Kamp, The Nevanlinna-Pick problem for matrix-valued functions,SIAM J. Appl. Math.,36 (1979), 47–61.

    Article  MathSciNet  Google Scholar 

  11. C. A. Desoer, F. M. Callier, W. S. Chan, Robustness of stability conditions for linear time-invariant feedback systems,IEEE Trans. Automat. Control,22 (1977), 586–590.

    Article  MathSciNet  Google Scholar 

  12. C. A. Desoer and C. A. Lin, Nonlinear unity-feedback systems andQ-parametrization,Internat. J. Control,40 (1984), 37–51.

    MathSciNet  Google Scholar 

  13. C. A. Desoer and M. Vidyasagar,Feedback System: Input-Output Properties, Academic Press, New York, 1975.

    MATH  Google Scholar 

  14. J. Doyle and G. Stein, Multivariable feedback design: concepts for a classical/modern synthesis,IEEE Trans. Automat. Control,26 (1981), 4–16.

    Article  Google Scholar 

  15. B. A. Francis, On robustness of the stability of feedback systems,IEEE Trans. Automat. Control,25 (1980), 817–818.

    Article  MathSciNet  Google Scholar 

  16. B. A. Francis, J. W. Helton, and G. Zames,H -Optimal feedback controllers for linear multivariable systems,IEEE Trans. Automat. Control,29 (1984), 888–900.

    Article  MathSciNet  Google Scholar 

  17. A. H. Glattfelder and W. Schaufelberger, Stability analysis of single loop control systems with saturation and antireset-windup circuit,IEEE Trans. Automat. Control,28 (1983), 1074–1081.

    Article  Google Scholar 

  18. N. J. Krikelis, Stable feedback integral control with “intelligent” integrators,Internat. J. Control,32 (1980), 465–473.

    MathSciNet  Google Scholar 

  19. M. G. Safonov, A. J. Laub, and G. L. Hartmann, Feedback properties of multivariable systems: the role and use of the return difference matrix,IEEE Trans. Automat. Control,26 (1981), 47–65.

    Article  MathSciNet  Google Scholar 

  20. I. W. Sandberg, On theL 2-boundness of solutions of nonlinear functional equations,Bell System Tech. J.,43 (1964), 1581–1599.

    MathSciNet  Google Scholar 

  21. N. R. Sandell, Jr., Robust stability of systems with applications to singular perturbations,Automatica,15 (1979), 467–470.

    Article  Google Scholar 

  22. M. Vidyasagar and H. Kimura, Robust controllers for uncertain linear multivariable systems,Automatica,22 (1986), 85–94.

    Article  Google Scholar 

  23. D. C. Youla, H. A. Jabr, and J. J. Bongiorno, Jr., Modern Wiener-Hopf design of optimal controllers-Part II: The multivariable case,IEEE Trans. Automat. Control,21 (1976), 319–338.

    Article  MathSciNet  Google Scholar 

  24. G. Zames, Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses,IEEE Trans. Automat. Control,26 (1981), 301–320.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, KC., Lu, HC. Robust stabilization for multivariable systems with constrained control: Frequency domain approach. Math. Control Signal Systems 3, 81–96 (1990). https://doi.org/10.1007/BF02551357

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551357

Key words

Navigation