Skip to main content
Log in

Some nonlinear equations reducible to diffusion-type equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The problem of the reducibility of a system of second-order quasi-linear parabolic differential equations to diffusion-type equations is considered. An effective solution algorithm is suggested for this problem in the nondegenerate case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Pavlov, S. I. Svinolupov, and R. A. Sharipov,Funct. Anal. Appl.,30, 15–22 (1996); “An invariant criterion for the hydrodynamic integrability of hydrodynamic-type equations [in Russian],” in:Integrability in Dynamic Systems (L. A. Kalyakin, ed.), Inst. Math. Comp. Center Russ. Acad. Sci., Ufa (1994), pp. 27–48; Preprint solv-int/9407003 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. V. Ferapontov and R. A. Sharipov,Theor. Math. Phys.,108, 937–952 (1996); Preprint solv-int/9607003 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. V. Dmitrieva and R. A. Sharipov, “On the point transformations for the second-order differential equations,” Preprint solv-int/9703003 (1997).

  4. R. A. Sharipov, “On the point transformations for the equationy″=P+3Qy′+3Ry″ 2+Sy′3,” Preprint solv-int/9706003 (1997).

  5. O. N. Mikhailov and R. A. Sharipov, “On the point expansion for the certain class of differential equations of the second order,” Preprint solv-int/9712001 (1997).

  6. R. A. Sharipov, “Effective procedure of point classification for the equationsy″=P+3Qy′+3Ry′ 2+Sy′3,” Preprint Math. DG/9802027 (1998).

  7. G. W. Bluman and K. Kumei,Symmetries and Differential Equations, Springer, Berlin (1989).

    MATH  Google Scholar 

  8. P. Broadbridge and I. White,Water Resources Res.,24, 145–154 (1987).

    Article  ADS  Google Scholar 

  9. D. A. De Vries,Trans. Am. Geophys. Union,39, 909–916 (1958).

    Google Scholar 

  10. M. P. Edwards and P. Broadbridge,J. Phys. A,27, 5455–5465 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. R. D. Jackson,Proc. Am. Soil Sci. Soc.,37, 505–509 (1973).

    Article  Google Scholar 

  12. W. A. Jury, J. Letey, and L. H. Stolzy, “Flow of water and energy under desert conditions,” in:Water in Desert, Ecosystems (D. D. Evans and J. L. Thames, eds.). Dowden, Hutchinson, and Ross, Stroudsburg, PA (1981), pp. 92–113.

    Google Scholar 

  13. J. H. Knight and J. R. Philip,J. Eng. Math.,8, 219–227 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. R. Myerscough and J. D. Murray,Bull. Math. Biol.,54, No. 1, 77–94 (1992).

    MATH  Google Scholar 

  15. L. V. Ovsyannikov,Dokl. Akad. Nauk SSSR,123, 492–495 (1959).

    Google Scholar 

  16. J. R. Philip, “Quasi-analytic and analytic approaches to unsaturated flow,” in:Flow and Transport in the Natural Environment: Advances and Applications (W. L. Steffen and O. T. Denmead, eds.), Springer, Berlin (1988), pp. 30–48.

    Google Scholar 

  17. J. R. Philip and D. A. De Vries,Trans. Am. Geophys. Union,38, 222–232 (1957).

    Google Scholar 

  18. C. W. Rose,Aust. J. Soil Res.,6, 31–44 (1968).

    Article  Google Scholar 

  19. R. Shepherd and R. J. Wiltshire,Trans. Porous Media,20, 281–304 (1995).

    Article  Google Scholar 

  20. R. Shepherd and R. J. Wiltshire,IMA J. Appl. Math.,56, 277–287 (1996).

    MathSciNet  MATH  ADS  Google Scholar 

  21. J. A. SherrattBull. Math. Biol.,56, No. 1, 129–146 (1994).

    MATH  Google Scholar 

  22. C. Sophocleous,J. Phys. A,29, 6951–6959 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R. J. Wiltshire,J. Phys. A,27, 7821–7829 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. V. A. Baikov, A. V. Gladkov, and R. J. Wiltshire,J. Phys. A,31, 7483–7499 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. V. Mikhailov and A. B. Shabat, “Integrability conditions for the system of two equations of the formu t=A(u)uxx+F(u, ux),” Preprint, Inst. Theor. Phys, Chernogolovka (1985).

    Google Scholar 

  26. S. I. Svinolupov, “On multified analogues of the Burgers equation [in Russian],” Report, for the Presidium, Bashkir Div. Russ. Acad. Sci., Ufa (1987).

  27. S. I. Svinolupov,Phys. Lett. A,135, No. 1, 32 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. I. Svinolupov and I. T. Khabibullin,Math. Notes,60, 671–680 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Z. Golubchik and V. V. Sokolov,Funct. Anal. Appl.,30, 275–277 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  30. I. Z. Golubchik and V. V. Sokolov,Theor. Math. Phys.,112, 1097–1103 (1997).

    MathSciNet  MATH  Google Scholar 

  31. A. I. Kostrikin,Introduction to Algebra [in Russian], Nauka, Moscow (1977); English transl., Springer, New York (1982).

    MATH  Google Scholar 

  32. S. Lang,Algebra, Addison-Wesley, Reading, MA (1965).

    MATH  Google Scholar 

  33. R. A. Sharipov,A Course in Linear Algebra and Multidimensional Geometry [in Russian], Bashkir State Univ. Press, Ufa (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 123, No. 1, pp. 26–37, April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladkov, A.V., Dmitrieva, V.V. & Sharipov, R.A. Some nonlinear equations reducible to diffusion-type equations. Theor Math Phys 123, 436–445 (2000). https://doi.org/10.1007/BF02551049

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551049

Keywords

Navigation