Skip to main content
Log in

Polarization of vacuum by an external magnetic field in the (2+1)-dimensional quantum electrodynamics with a nonzero fermion density

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Green's function of the Dirac equation with an external stationary homogeneous magnetic field in the (2+1)-dimensional quantum electrodynamics (QED 2+1) with a nonzero fermion density is constructed. An expression for the polarization operator in an external stationary homogenous magnetic field with a nonzero chemical potential is derived in the one-loopQED 2+1 approximation. The contribution of the induced Chern—Simons term to the polarization operator and the effective Lagrangian for the fermion density corresponding to the occupation of n relativistic Landau levels in an external magnetic field are calculated. An expression of the induced Chern—Simons term in a magnetic field for the case of a finite temperature and a nonzero chemical potential is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. J. Schakel and G. W. Semenoff,Phys. Rev. Lett.,66, 2653 (1991).

    Article  ADS  Google Scholar 

  2. R. E. Prange and S. M. Girvin, eds.,The Quantum Hall Effect (2nd ed.) Springer, New York (1990).

    Google Scholar 

  3. F. Wilczek,Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore (1990).

    Book  MATH  Google Scholar 

  4. A. M. J. Schakel,Phys. Rev. D,43, 1428 (1991).

    Article  ADS  Google Scholar 

  5. A. Negau and A. M. J. Schakel,Phys. Rev. D,48, 1785 (1993).

    Article  ADS  Google Scholar 

  6. J. M. Leinaas and J. Myrheim,Nuovo Cimento B,37, 1 (1977).

    Article  ADS  Google Scholar 

  7. G. A. Goldin, R. Menikoff, and D. H. Sharp,J. Math. Phys.,22, 1664 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Wilczek,Phys. Rev. Lett.,48, 1144 (1982).;49, 957 (1982).

    Article  ADS  Google Scholar 

  9. Y. Hosotani,Phys. Lett. B,319, 332 (1993);Phys. Rev. D,51, 2022 (1995).

    Article  ADS  Google Scholar 

  10. V. R. Khalilov and C. L. Ho,Mod. Phys. Lett. A,13, 615 (1998).

    Article  ADS  Google Scholar 

  11. V. R. Khalilov,Theor. Math. Phys.,119, 481 (1999); C. L. Ho and V. R. Khalilov,Phys. Rev. A,61, 032104 (2000).

    Article  Google Scholar 

  12. A. V. Turbiner,Commun. Math. Phys.,118, 467 (1988); M. A. Shifman and A. V. Turbiner,Commun. Math. Phys.,126, 347 (1989).

    Article  ADS  Google Scholar 

  13. V. R. Khalilov and C. L. Ho,Phys. Rev. D.,60, 033003 (1999).

    Article  ADS  Google Scholar 

  14. V. I. Ritus,JETP,30, 1181 (1970).

    ADS  Google Scholar 

  15. I. A. Batalin and A. E. Shabad,JETP,33, 483 (1971).

    ADS  Google Scholar 

  16. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko,Vacuum Quantum Effects in Strong Fields [in Russian], Energoatomizdat, Moscow (1988).

    Google Scholar 

  17. V. Zeitlin,Phys. Lett. B,352, 422 (1995).

    Article  ADS  Google Scholar 

  18. V. I. Ritus,Trudy Fiz. Inst. Lebedev.,111, 5 (1979).

    MathSciNet  Google Scholar 

  19. S. Deser, R. Jackiw, and S. Templeton,Phys. Rev. Lett.,48, 975 (1982);Ann. Phys.,140, 372 (1982).

    Article  ADS  Google Scholar 

  20. I. M. Ternov, V. Ch. Zhukovskii, and A. V. Borisov,Quantum Processes in a Strong External Field [in Russian], Moscow Univ., Moscow (1989).

    Google Scholar 

  21. A. Erdélyi et al., eds.,Higher Transcendental Functions (Based on notes left by H. Bateman), Vol. 2, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  22. V. A. Fock,Sow. Phys.,12, 404 (1937).

    Google Scholar 

  23. J. Schwinger,Phys. Rev.,82, 664 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  24. V. R. Khalilov,Theor. Math. Phys.,121, 1606 (1999).

    Article  Google Scholar 

  25. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,Statistical Physics, Part 2:Theory of Condensed States [in Russian] (Vol. 9 inCourse of Theoretical Physics by L. D. Landau and E. M. Lifshits), Nauka, Moscow (1978); English transl., Pergamon, Oxford, (1980).

    Google Scholar 

  26. A. E. Shabad, “Pecularities of the photon polarization operator in a magnetic field [in Russian],” Preprint No. 60, Lebedev Phys. Inst. Moscow (1974).

    Google Scholar 

  27. A. E. Lobanov and V. R. Khalilov,JETP,50, 278 (1979).

    ADS  Google Scholar 

  28. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,Quantum Electrodynamics [in Russian], Nauka, Moscow (1980); English transl., Pergamon, Oxford (1982).

    Google Scholar 

  29. I. S. Gradshtein and I. M. Ryzhik,Tables of Integrals, Series, and Products [in Russian] Gos. Izd. Fiz.-Mat. Lit., Moscow (1963); English transl., Acad. Press, New York (1969).

    Google Scholar 

  30. A. Redlich,Phys. Rev. D.,29, 2366 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  31. N. N. Bogoliubov and D. V. Shirkov,Quantum Fields [in Russian], Nauka, Moscow (1980).

    MATH  Google Scholar 

  32. T. Bernstein and A. Lee,Phys. Rev. D,32, 1020 (1985); S. Coleman and B. Hill,Phys. Lett. B,159, 184 (1985); Y. Nagahami,Z. Phys. C,37, 583 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 125, No. 1, pp. 132–151, October, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalilov, V.R. Polarization of vacuum by an external magnetic field in the (2+1)-dimensional quantum electrodynamics with a nonzero fermion density. Theor Math Phys 125, 1413–1430 (2000). https://doi.org/10.1007/BF02551045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551045

Keywords

Navigation