Skip to main content
Log in

Hidden quantumR-matrix in the discrete-time classical Heisenberg magnet

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct local M-operators for an integrable discrete-time version of the classical Heisenberg magnet by convoluting the twisted quantum trigonometric 4×4 R-matrix with certain vectors in its “quantum” space. Components of the vectors are identified with τ-functions of the model. Hirota's bilinear formalism is extensively used. The construction generalizes the known representation of M-operators in continuous-time models in terms of Lax operators and the classical τ-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Takhtadzhyan and L. D. Faddeev,The Hamiltonian Methods in the Theory of Solitons [in Russian], Nauka, Moscow (1986); English transl.: L. D. Faddeev and L. A. Takhtajan, Berlin, Springer (1987).

    MATH  Google Scholar 

  2. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii,Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov, Plenum, New York (1984).

    MATH  Google Scholar 

  3. A. V. Zabrodin,JETP Letters,66, 620–625 (1997).

    MathSciNet  Google Scholar 

  4. E. K. Sklyanin,J. Sov. Math.,19, 1546–1596 (1982).

    Article  MATH  Google Scholar 

  5. A. G. Izergin and V. E. Korepin,Lett. Math. Phys.,5, 199–205 (1981);Nucl. Phys. B,205, 401–413 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  6. L. A. Takhatadzhyan and L. D. Faddeev,Russ. Math. Surv.,34, No. 5, 11–61 (1979).

    Article  Google Scholar 

  7. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin,Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1989).

    Google Scholar 

  8. M. Jimbo and T. Miwa,Publ. RIMS Kyoto Univ.,19, 943–1001 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Segal and G. Wilson,Publ. IHES 61, 5–65 (1985).

    MathSciNet  MATH  Google Scholar 

  10. R. Hirota,J. Phys. Soc. Japan,43, 1424–1433 (1977).

    ADS  MathSciNet  Google Scholar 

  11. R. Hirota,J. Phys. Soc. Japan,43, 2074–2078 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Hirota,J. Phys. Soc. Japan,50, 3785–3791 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  13. T. Miwa,Proc. Japan Acad. A,58, 9–12 (1982).

    MathSciNet  MATH  Google Scholar 

  14. E. Date, M. Jimbo, and T. Miwa,J. Phys. Soc. Japan,51, 4116–4131 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Saito and N. Saitoh,Phys. Lett. A,120, 322–326 (1987);J. Math. Phys.,28, 1052–1055 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  16. E. K. Sklyanin,Funct. Anal. Appl.,16, 263–270 (1983).

    Article  Google Scholar 

  17. L. Faddeev and A. Volkov,Lett. Math. Phys.,32, 125–133 (1994).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. A. Volkov,Lett. Math. Phys.,39, 313–329 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Yu. Volkov and L. D. Faddeev,Theor. Math. Phys.,92, 837–842 (1992).

    Article  MathSciNet  Google Scholar 

  20. V. Bazhanov, A. Bobenko, and N. Reshetikhin,Commun. Math. Phys.,175, 377–400 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. R. Kashaev and N. Reshetikhin,Commun. Math. Phys.,188, 251–266 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. K. Ueno and K. Takasaki,Adv. Stud. Pure Math.,4, 1–95 (1984).

    MathSciNet  Google Scholar 

  23. A. V. Zabrodin,Theor. Math. Phys.,113, 1347–1392 (1997).

    MathSciNet  Google Scholar 

  24. I. M. Krichever,Russ. Math. Surv.,33, No. 4, 255–256 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Krichever, P. Wiegmann, and A. Zabrodin,Commun. Math. Phys.,193, 373–396 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. V. G. Drinfeld,Leningrad Math. J.,1, 1419–1457 (1990).

    MathSciNet  Google Scholar 

  27. N. Reshetikhin,Lett. Math. Phys.,20, 331–335 (1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. O. Babelon and C.-M. Viallet,Phys. Lett. B 237, 411–416 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Freidel and J. M. Maillet,Phys. Lett. B 262, 278–284 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  30. F. W. Nijhoff, H. W. Capel, and V. G. Papageorgion,Phys. Rev. A,46, 2155–2158 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. S. Semenov-tian-Shansky,Zap. Nauchn. Semin. LOMI,200, 156–166 (1993).

    Google Scholar 

  32. E. K. Sklyanin,Zap. Nauchn. Semin. LOMI,146, 119–136 (1985).

    MathSciNet  MATH  Google Scholar 

  33. A. Weinstein and P. Xu,Commun. Math. Phys.,148, 309–343 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was written at the request of the Editorial Board.

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 125, No. 2, pp. 179–204, November, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabrodin, A.V. Hidden quantumR-matrix in the discrete-time classical Heisenberg magnet. Theor Math Phys 125, 1455–1475 (2000). https://doi.org/10.1007/BF02551007

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551007

Keywords

Navigation