Skip to main content
Log in

Equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon-Fock equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A strict proof of the equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon-Fock theories is presented for physical S-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin-Kemmer-Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the S-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Petiau,Acad. Roy. de Belg., A. Sci. Mem. Collect,16, No. 2, 1 (1936).

    Google Scholar 

  2. R. Y. Duffin,Phys. Rev.,54, 1114 (1938).

    Article  ADS  Google Scholar 

  3. N. Kemmer,Proc. Roy. Soc. A,173, 91 (1939).

    ADS  MathSciNet  Google Scholar 

  4. H. Umezawa,Quantum Field Theory, North-Holland, Amsterdam (1956).

    MATH  Google Scholar 

  5. A. I. Akhiezer and V. B. Berestetskii,Quantum Electrodynamics [in Russian], Nauka, Moscow (1969); English transl. prev. ed., Oldbourne, London (1962).

    Google Scholar 

  6. T. Kinoshita,Progr. Theor. Phys.,5, 473 (1950); T. Kinoshita and Y. Nambu,Progr. Theor. Phys.,5, 749 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  7. R. A. Krajcik and M. M. Nieto,Am. J. Phys.,45, 818 (1977).

    Article  ADS  Google Scholar 

  8. V. L. Ginzburg, “Quantum field theory and quantum statistics,” in:Essays in Honor of the Sixtieth Birthday of E. S. Fradkin (I. A. Batalin, C. J. Isham, and G. A. Vilkovisky, eds.), Vol. 2, Adam Hilger, Bristol (1987), p. 15.

    Google Scholar 

  9. A. Wightman, “The Dirac equation,” in:Aspects of Quantum Theory (A. Salam and E. P. Wigner, eds.), Cambridge Univ. Press, Cambridge (1972), p. 95.

    Google Scholar 

  10. G. Velo and D. Zwanziger,Phys. Rev.,186, 1337 (1969);188, 2218 (1969).

    Article  ADS  Google Scholar 

  11. E. Fischbach, F. Iachello, A. Lande, M. Nieto, and C. Scott,Phys. Rev. Lett.,26, 1200 (1971).

    Article  ADS  Google Scholar 

  12. B. M. Pimentel and J. L. Tomazelli,Progr. Theor. Phys.,45, 1105 (1995).

    Article  ADS  Google Scholar 

  13. H. Lehmann, K. Symanzik, and W. Zimmermann,Nuovo Cimento,1, 425 (1955).

    Google Scholar 

  14. D. M. Gitman and I. V. Tyutin,Quantization of Fields with Constraints [in Russian], Nauka, Moscow (1986); English transl., Springer, Berlin (1990).

    MATH  Google Scholar 

  15. P. A. M. Dirac,Proc. Roy. Soc. A,246, 326 (1958).

    ADS  MathSciNet  Google Scholar 

  16. A. A. Slavnov and L. D. Faddeev,Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1988); English transl. prev. ed.: L. D. Faddeev and A. A. Slavnov, Benjamin, London (1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 124, No. 3, pp. 445–462, September, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimentel, B.M., Fainberg, V.Y. Equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon-Fock equations. Theor Math Phys 124, 1234–1249 (2000). https://doi.org/10.1007/BF02551001

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551001

Keywords

Navigation