A tale of three equations: Breit, Eddington—Gaunt, and Two-Body Dirac

Abstract

G. Breit's original paper of 1929 postulates the Breit equation as a correction to an earlier defective equation due to Eddington and Gaunt, containing a form of interaction suggested by Heisenberg and Pauli. We observe that manifestly covariant electromagnetic Two-Body Dirac equations previously obtained by us in the framework of Relativistic Constraint Mechanics reproduce the spectral results of the Breit equation but through an interaction structure that contains that of Eddington and Gaunt. By repeating for our equation the analysis that Breit used to demonstrate the superiority of his equation to that of Eddington and Gaunt, we show that the historically unfamiliar interaction structures of Two-Body Dirac equations (in Breit-like form) are just what is needed to correct the covariant Eddington Gaunt equation without resorting to Breit's version of retardation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Breit,Phys. Rev. 34, 553 (1929).

    Article  ADS  MathSciNet  Google Scholar 

  2. 2.

    M. Kalb and P. Van Alstine, Yale Reports, C00-3075-146 (1976), C00-3075-156 (1976); P. Van Alstine, Ph.D. Dissertation Yale University, 1976.

  3. 3.

    I. T. Todorov, Dubna Joint Institute for Nuclear Research No. E2-10175, 1976;Ann. Inst. H. Poincaré A 28, 207 (1978).

  4. 4.

    A. Komar,Phys. Rev. D 18, 1881, 1887 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  5. 5.

    P. Droz-Vincent,Rep. Math. Phys. 8, 79 (1975).

    Article  MathSciNet  Google Scholar 

  6. 6.

    P. Van Alstine and H. W. Crater.J. Math. Phys. 23, 1697 (1982), H. W. Crater and P. Van Alstine,Ann. Phys. (N.Y.) 148, 57 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  7. 7.

    H. Sazdjian,Phys. Rev. D 33, 3401 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  8. 8.

    H. Sazdjian,Phys. Rev. D 33, 3425 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  9. 9.

    L. P. Horwitz and F. Rohrlich,Phys. Rev. D 24, 1928 (1981).

    ADS  MathSciNet  Google Scholar 

  10. 10.

    I. T. Todorov, inProperties of the Fundamental Interactions, A. Zichichi, ed. (Editrice Compositori, Bologna, 1973), Vol. 9, Part C, pp. 953–979;Phys. Rev. D 3, 2351 (1971).

    Google Scholar 

  11. 11.

    H. W. Crater and P. Van Alstine,Phys. Rev. Lett. 53, 1577 (1984),Phys. Rev. D 37, 1982 (1988).

    Article  Google Scholar 

  12. 12.

    H. W. Crater and P. Van Alstine,Found Phys. 24, 297 (1994). A preliminary form of this “Breit Form” of the Two-Body Dirac equations (equivalent to our present form in the c.m. rest-frame) was presented by us in a contributed talk at the Spring Meeting of the American Physical Society (1984).

    Article  Google Scholar 

  13. 13.

    Peter Van Alstine and H. W. Crater,Phys. Rev. D 34, 1932 (1986).

    Article  ADS  Google Scholar 

  14. 14.

    H. W. Crater, R. L. Becker, C. Y. Wong, and P. Van Alstine,Phys. Rev. D 46, 5117 (1992).

    Article  ADS  Google Scholar 

  15. 15.

    H. Sazdjian,Phys. Lett. B 156, 381 (1985);Extended Objects and Bound Systems, Proceedings of the Karuizawa International Symposium, 1992, O. Hara, S. Ishida, and S. Nake, eds. (World Scientific, Singapore, 1992), p. 117.

    Article  ADS  MathSciNet  Google Scholar 

  16. 16.

    H. W. Crater and P. Van Alstine,Phys. Rev. D 36, 3007 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  17. 17.

    H. Jallouli and H. Sazdjian,Phys. Lett. B 366, 409 (1996); preprint IPNO/TH 96-01. hep-ph/9602241.

    Article  ADS  Google Scholar 

  18. 18.

    H. W. Crater, C. W. Wong, and C. Y. Wong, “Singularity-Free Breit Equation from Constraint Two-Body-Dirac Equations,”Int. J. Mod. Phys. E 5(4), 589–615 (1996).

    Article  ADS  Google Scholar 

  19. 19.

    A. Eddington,Proc. R. Soc. London A 122, 358 (1929); J. A. Gaunt,Philos. Trans. R. Soc. 228, 151 (1929);Proc. R. Soc. London A 122, 153 (1929).

    ADS  Google Scholar 

  20. 20.

    C. G. Darwin,Philos. Mag. 39, 537 (1920).

    Google Scholar 

  21. 21.

    J. A. Wheeler and R. P. Feynman,Rev. Mod. Phys. 17, 157 (1945);21, 425 (1949); H. Tetrode,Z. Phys. 10, 317, (1922), A. D. Fokker,Z. Phys. 58, 386, (1929), E. C. G. Sudarshan and N. Mukunda,Classical Dynamics: A Modern Perspective (Wiley, New York, 1974).

    Article  ADS  Google Scholar 

  22. 22.

    P. Van Alstine and H. W. Crater,Phys. Rev. D 33, 1037 (1986).

    Article  ADS  Google Scholar 

  23. 23.

    H. W. Crater and P. Van Alstine,Phys. Rev. D 30, 2585 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  24. 24.

    J. Schwinger,Particles, Sources, and Fields (Addison-Wesley, Reading, Massachusetts, 1973), Vol. 2, pp. 348–349. The canonical transformation is (see Ref. 25 below also) r→r′=(1+1/2α/(m 1+m 2)1/r)r, p→p′=p+1/2α/(m 1+m 2)1/r 3(r×L).

    Google Scholar 

  25. 25.

    H. W. Crater and P. Van Alstine,Phys. Rev. D 46, 4476 (1992); H. W. Crater and D. Yang,J. Math. Phys. 32, 2374 (1991).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Alstine, P., Crater, H.W. A tale of three equations: Breit, Eddington—Gaunt, and Two-Body Dirac. Found Phys 27, 67–79 (1997). https://doi.org/10.1007/BF02550156

Download citation

Keywords

  • Manifest Covariance
  • Classical Electromagnetic Field
  • Darwin Interaction
  • Spinless Charged Particle
  • Tennessee Space Institute