Skip to main content
Log in

Homogeneous special geometry

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Motivated by the physical concept of special geometry, two mathematical constructions are studied which relate real hypersurfaces to tube domains and complex Lagrangian cones, respectively. Methods are developed for the calssification of homogeneous Riemannian hypersurfaces and the classification of linear transitive reductive algebraic group actions on pseudo-Riemannian hypersurfaces. The theory is applied to the case of cubic hypersurfaces, which is the one most relevant to special geometry, obtaining the solution of the two classification problems and the description of the corresponding homogeneous special Kähler manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Alekseevskiî,Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR Izvestija9, No. 2 (1975), 297–339.

    Article  Google Scholar 

  2. D. V. Alekseevsky, V. Cortés,Isometry groups of homogeneous quaternionic Kähler manifolds (to appear); available as preprint Erwin Schrödinger Institut 230 (1995).

  3. J. Bagger, E. Witten,Matter couplings in N=2 supergravity, Nucl. Phys.B222 (1983), 1–10.

    Article  MathSciNet  Google Scholar 

  4. S. Cecotti,Homogeneous Kähler manifolds and T-algebras in N=2 supergravity and superstrings, Commun. Math. Phys.124 (1989), 23–55.

    Article  MathSciNet  Google Scholar 

  5. S. Cecotti, S. Ferrara, L. Girardello,Geometry of Type II. Superstrings and the moduli of superconformal field theories, Int. J. Mod. Phys.A4 (1989), 2475–2529.

    Article  MathSciNet  Google Scholar 

  6. V. Cortés,Alekseevskian spaces, Diff. Geom. Appl.6 (1996), 129–168; available as preprint396, SFB 256 (Bonn).

    Article  Google Scholar 

  7. E. Cremmer,Dimensional reduction in field theory and hidden symmetries in extended supergravity, in Supergravity’81, ed. S. Ferrara, J.G. Taylor, CUP, 1982.

  8. B. de Wit, A. Van Proeyen,Potentials and symmetries of general gauged N=2 supergravity-Yang-Mills models, Nucl. Phys.B245 (1989), 89–117.

    Article  Google Scholar 

  9. B. de Wit, A. Van Proeyen,Special geometry, cubic polynomials and homogeneous quaternionic spaces, Commun. Math. Phys.149 (1992), 307–333.

    Article  Google Scholar 

  10. S.G. Gindikin, I.I. Pyateckiî-Shapiro, E.B. Vinberg,Homogeneous Kähler manifolds in Geometry of Homogeneous Bounded Domains (C.I.M.E., 3° Ciclo, Urbino, 1967), Edizioni Cremonese, Rome, 1968, 3–87.

    Google Scholar 

  11. M. Kontsevich,Mirror symmetry in dimension 3, Séminaire BOURBAKI 47ème année, no. 801 (1994–1995), 1–17.

    Google Scholar 

  12. J.-L. Koszul,Domaines bornés homogènes et orbites de groupes de transformations affines, Bull. Soc. math. France,89 (1961), 515–533.

    MathSciNet  Google Scholar 

  13. H.B. Lawson, M.-L. Michelson,Spin Geometry, Princeton, Princeton University Press, 1989.

    MATH  Google Scholar 

  14. J. Morrow, K. Kodaira,Complex Manifolds, Holt, Rinehart and Winston, Inc., New York, 1970.

    Google Scholar 

  15. I. I. Pyateckiî-Shapiro,Automorphic Functions and the Geometry of Classical Domains, Gordon and Breach, New York, 1969.

    Google Scholar 

  16. M. Sato, T. Kimura,A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J.,65 (1977), 1–155.

    MathSciNet  Google Scholar 

  17. A. Strominger,Special geometry, Commun. Math. Phys.133 (1990), 163–180.

    Article  MathSciNet  Google Scholar 

  18. G. Tian,Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Peterson-Weil metric, in Mathematical Aspects of String Theory, ed. S.-T. Yau, World Scientific, Singapore, 1987, 629–646.

    Google Scholar 

  19. J. Tits,Tabellen zu den einfachen Lieschen Gruppen und ihren Darstellungen, LNM 40, Springer, Berlin, 1967.

    Google Scholar 

  20. A. Todorov,The Weil-Petersson geometry of the moduli space of SU (n≥3) (Calabi-Yau) manifolds I, Commun. Math. Phys.126 (1989), 325–346.

    Article  Google Scholar 

  21. E. B. Vinberg,The Morozov-Borel theorem for real algebraic Lie groups, Soviet Math. Dokl.2 (1961), 1416–1419.

    Google Scholar 

  22. E. B. Vinberg,The theory of convex homogeneous cones, Trans. of the Moscow Math. Soc.12 (1963), 340–403.

    Google Scholar 

  23. R. O. Wells,Differential Analysis on Complex Manifolds, Graduate Texts in Mathematics 65, Springer, New York, 1980.

    MATH  Google Scholar 

  24. J. A. Wolf,Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech.14 (1965), 1033–1047.

    MathSciNet  Google Scholar 

  25. J. A. Wolf,The action of a real semisimple group on a complex flag manifold. I: Orbit structure and holomorphic arc components, Bulletin of the AMS75, No. 6 (1969), 1121–1237.

    Google Scholar 

  26. S.-T. Yau (ed.),Essays on Mirror Manifolds, International Press, Hong Kong (1992).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Alexander von Humboldt Foundation, MSRI (Berkeley) and SFB 256 (Bonn University). Research at MSRI is supported in part by grant DMS-9022140.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés, V. Homogeneous special geometry. Transformation Groups 1, 337–373 (1996). https://doi.org/10.1007/BF02549212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02549212

Keywords

Navigation