Skip to main content
Log in

Phase diagram of Bi2Sr2CaCu2O8 in the mixed state: effects of anisotropy and disorder

  • Plenary and Invited Papers
  • Superconductivity
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The vortex-lattice phase transitions in Bi2Sr2CaCu2O8 crystals with various oxygen stoichiometry and artificially induced disorder are studied using local magnetization measurements. The first-order phase transition line at elevated temperatures shifts upward for more isotropic over-doped samples. At lower temperatures another sharp transition is observed at the onset of second magnetization peak. The two lines merge at a multicritical point at intermediate temperatures forming apparently a continuous phase transition line that is anisotropy dependent. Weak point disorder preserves the first-order transition and shifts it to lower fields. This shift is accompanied by a corresponding downward shift of the second magnetization peak. A low density of columnar defects shifts the first-order transition to higher fields, apparently transforming it into a continuous transition. The first-order transition in clean crystals is concluded to involve melting of the vortex-lattice. Schematic phase diagram based on this study is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Blatteret al., Rev. Mod. Phys.66, 1125 (1994); E. H. Brandt, Rep. Prog. Phys.58, 1465. (1995)

    Article  ADS  Google Scholar 

  2. D. R. Nelson, Phys. Rev. Lett.60, 1973 (1988); Nature375, 356 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Houghton, R. A. Pelcovits, and A. Sudbo, Phys. Rev. B40, 6773 (1989); E. H. Brandt, Phys. Rev. Lett.63, 1106 (1989); S. Hikami, A. Fujita, and A. I. Larkin, Phys. Rev. B44, 10400 (1991); G. Blatter and B. I. Ivlev, Phys. Rev. B50, 10272 (1994); R. Sasik and D. Stroud, Phys. Rev. Lett.75, 2582 (1995).

    Article  ADS  Google Scholar 

  4. L. Glazman and A. Koshelev, Phys. Rev. B43, 2835 (1991); L. L. Daemen, L. N. Bulaevskii, N. P. Maley, and J. Y. Coulter, Phys. Rev. Lett.70, 1167 (1993); Phys. Rev. B47, 11291 (1993).

    Article  ADS  Google Scholar 

  5. G. Blatter, V. Geshkenbein, A. Larkin, and H. Nordborg, Phys. Rev. B54, 72 (1996).

    Article  ADS  Google Scholar 

  6. H. Safaret al., Phys. Rev. Lett.69, 824 (1992);ibid Phys. Rev. Lett.70, 3800 (1993) W. K. Kwoket al., Phys. Rev. Lett.69, 3370 (1992);ibid. Phys. Rev. Lett.72, 1092 (1994).

    Article  ADS  Google Scholar 

  7. H. Pastorizaet al., Phys. Rev. Lett.72, 1 (1994).

    Article  Google Scholar 

  8. R. Cubittet al., Phys. Rev. Lett.364, 407 (1993); S. L. Leeet al., Phys. Rev. Lett.71, 3862 (1993).

    Google Scholar 

  9. H. Pastoriza and P. H. Kes, Phys. Rev. Lett.75, 3524 (1995); D. T. Fuchset al., Phys. Rev. B54, 796 (1996); S. Watauchiet al., Physica C259, 373 (1996).

    Article  ADS  Google Scholar 

  10. E. Zeldovet al., Nature375, 373 (1995).

    Article  ADS  Google Scholar 

  11. R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. Lett.76, 835 (1996); U. Welpet al., (preprint).

    Article  ADS  Google Scholar 

  12. R. A. Doyleet al. Phys. Rev. Lett.75, 4520 (1995).

    Article  ADS  Google Scholar 

  13. B. Khaykovichet al., Phys. Rev. Lett.76, 2555 (1996).

    Article  ADS  Google Scholar 

  14. D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B43, 130 (1991).

    Article  ADS  Google Scholar 

  15. M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, and V. V. Vinokur, Phys. Rev. Lett.63, 2303 (1989).

    Article  ADS  Google Scholar 

  16. R. H. Kochet al., Phys. Rev. Lett.63, 511 (1989); P. L. Gammel, L. F. Schneemeyer, and D. Bishop, Phys. Rev. Lett.66, 953 (1991).

    Google Scholar 

  17. N. Motohira, K. Kuwahara, T. Hasegawa, K. Kishio, and K. Kitazawa, J. Ceram. Soc. Jpn. Int. Ed.97, 994 (1989).

    Google Scholar 

  18. T. W. Li, P. H. Kes, N. T. Hien, J. J. M. Franse, and A. A. Menovsky, J. Crys. Grow.135, 481 (1993).

    Article  Google Scholar 

  19. T. W. Liet al., Physica C224, 110 (1994).

    Article  ADS  Google Scholar 

  20. H. Vicheryet al., Physica C159, 697 (1989); A. Legriset al., J. Phys. I3, 1605 (1993); F. Rullier-Albenque, A. Legris, H. Berger, and L. Forro, Physica C254, 88 (1995).

    Article  ADS  Google Scholar 

  21. V. Hardyet al., Nucl. Instr. Meth. B54, 472 (1991).

    Article  ADS  Google Scholar 

  22. E. Zeldovet al., Phys. Rev. Lett.73, 1428, (1994); D. Majeret al., in “Coherence in High-Temperature Superconductors” edited by G. Deutscher and A. Revcolevschi, World Scientific (Singapore), 271 (1996).

    Article  ADS  Google Scholar 

  23. G. Yanget al., Phys. Rev. B48, 4054 (1993); T. Tamegaiet al., Physica C223, 33 (1993); K. Kishioet al., in “Proc. 7th Intnl. Workshop on Critical Currents in Superconductors” ed. H. W. Weber, World Sci. Pub., Singapore, p. 339 (1994).

    Article  ADS  Google Scholar 

  24. T. Hanaguriet al., Physica C256, 111 (1995).

    Article  ADS  Google Scholar 

  25. Y. Yamaguchiet al., Physica C246, 216 (1995).

    Article  ADS  Google Scholar 

  26. B. Revazet al., Europhys. Lett.,33, 701 (1996).

    Article  ADS  Google Scholar 

  27. J. A. Fendrichet al., Phys. Rev. Lett.74, 1210 (1995).

    Article  ADS  Google Scholar 

  28. Y. Imry and M. Wortis, Phys. Rev. B19, 3580 (1979).

    Article  ADS  Google Scholar 

  29. G. I. Menon and C. Dasgupta, Phys. Rev. Lett.73, 1023 (1994).

    Article  ADS  Google Scholar 

  30. A. I. Larkin and V. M. Vinokur, Phys. Rev. Lett.75, 4666 (1995).

    Article  ADS  Google Scholar 

  31. R. Ikeda, J. Phys. Soc. Jpn.65, 1170 (1996).

    Article  ADS  Google Scholar 

  32. M. J. P. Gingras and D. A. Huse, Phys. Rev. B53, 15193 (1996); D. Ertas and D. R. Nelson (preprint); S. Ryu, A. Kapitulnik, and S. Doniach (preprint).

    Article  ADS  Google Scholar 

  33. E. Zeldovet al., Europhys. Lett.30, 367 (1995).

    Article  Google Scholar 

  34. N. Chikumotoet al., Phys. Rev. Lett.69, 1260 (1992); Physica C185–189, 2201 (1993).

    Article  ADS  Google Scholar 

  35. N. Morozov, E. Zeldov, D. Majer, and M. Konzcykowski, Phys. Rev. B54, 3784 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaykovich, B., Zeldov, E., Konczykowski, M. et al. Phase diagram of Bi2Sr2CaCu2O8 in the mixed state: effects of anisotropy and disorder. Czech J Phys 46 (Suppl 6), 3218–3224 (1996). https://doi.org/10.1007/BF02548133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02548133

Keywords

Navigation