Skip to main content
Log in

Phase transitions of helium in aerogel

  • Fritz London Award Lectures
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The effect of dilute quenched impurities on the liquid-vapor critical point, superfluid and He3−He4 phase separation transitions were studied by introducing liquid helium into aerogel. Aerogel is a highly porous glass consisting of atomically thin silica strands interconnected at random sites. In spite of the random environment, the transitions were found to be remarkably sharp and well defined. Although the silica network constitutes as little as two percent of the total volume, the nature of the transitions is completely changed. When a He3−He4 mixture is placed inside aerogel of 98 percent porosity, the coexistence region is found to be detached from the superfluid transition, line, giving rise to a new superfluid mixture that is rich in He3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Reppy, J. Low Temp. Phys. 86 (1992) 205.

    Article  ADS  Google Scholar 

  2. M. H. W. Chan, K. I. Blum, S. Q. Murphy, G. K. S. Wong and J. D. Reppy, Phys. Rev. Lett. 61 (1988) 1950; G. K. S. Wong, P. A. Crowell, H. A. Cho and J. D. Reppy, Phys. Rev. B48 (1993) 3558.

    Article  ADS  Google Scholar 

  3. J. V. Porto and J. M. Parpia, Phys. Rev. Lett. 74 (1995) 4667.

    Article  ADS  Google Scholar 

  4. D. T. Sprague, T. M. Haard, J. B. Kycia, M. R. Rand, Y. Lee, P. J. Hamot and W. P. Halperin, Phys. Rev. Lett. 75 (1995) 661.

    Article  ADS  Google Scholar 

  5. J. V. Porto and J. M. Parpia, elsewhere in this volume.

  6. W. P. Halperin, et al. elsewhere in this volume.

  7. For the most recent results on aerogel, see R. W. Pekala and L. W. Hrubesh, eds. Aerogel 4, Proceedings of the Fourth International Symposium on Aerogel, North Holland, Amsterdam (1995) [J. of Non-Cryst. Solids, Vol. 186 (1995)]. For a more informal account, see J. Fricke, Aserogels, Sci. American (1989), Vol. 258, No. 5, 92.

    Google Scholar 

  8. G. C. Ruben, L. W. Hrubesh, T. M. Tillotson, J. of Non-Cryst. Solids 186 (1995) 209.

    Article  ADS  Google Scholar 

  9. A. P. Y. Wong and M. H. W. Chan, Phys. Rev. Lett. 65 (1990) 2567.

    Article  ADS  Google Scholar 

  10. F. Brochard and P. G. deGennes, J. Phys. Lett. (Paris) 44 (1983) 785; P. G. deGennes, J. Phys. Chem. 88 (1984) 6469.

    Google Scholar 

  11. A. T. Ogielski, Phys. Rev. Lett. 57 (1986) 1251.

    Article  ADS  Google Scholar 

  12. A. Maritan, M. Swift, M. Cieplak, M. H. W. Chan, M. W. Cole and J. R. Banavar, Phys. Rev. Lett. 67 (1991) 1821.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. A. P. Y. Wong, S. B. Kim, W. I. Goldburg and M. H. W. Chan, Phys. Rev. Lett. 70 (1993) 954.

    Article  ADS  Google Scholar 

  14. S. Page and P. Monson, to appear in Phys. Rev. E.

  15. J. P. Donley and A. J. Liu, preprint.

  16. E. Pitard, M. L. Rosinberg and G. Tarjus, Molecular Simulation (to be published); E. Kievlik, M. L. Rosinberg, G. Tarjus and P. Monson, in Journ. of Phys: Condensed Matter.

  17. N. Mulders, R. Mehrotra, L. S. Goldner and G. Ahlers, Phys. Rev. Lett. 67 (1991) 695.

    Article  ADS  Google Scholar 

  18. M. J. McKenna, T. M. Slawecki and J. D. Maynard, Phys. Rev. Lett. 66 (1991) 1878.

    Article  ADS  Google Scholar 

  19. A. Brooks Harris, J. Phys. C7 (1974) 1671; J. T. Chayes, L. Chayes, D. S. Fisher and T. Spencer, Phys. Rev. Lett. 57 (1986) 2999.

    Article  ADS  Google Scholar 

  20. P. Wiltzius, F. S. Bates, S. B., Dierker and G. D. Wignall, Phys. Rev. A36 (1987) 2991.

    Article  ADS  Google Scholar 

  21. O. Narayan and D. S. Fisher, Phys. Rev. B42 (1990) 7869. For further references on current theories on the suprfluid transition in aerogel, see K. Moon and S. M. Girvin, Phys. Rev. Lett. 75 (1995) 1328.

    Article  ADS  Google Scholar 

  22. D. W. Schaefer, C. J. Brinker, D. Richter, B. Fargo and B. Frick, Phys. Rev. Lett. 64 (1990) 2316.

    Article  ADS  Google Scholar 

  23. M. Larson, N. Mulders and G. Ahlers, Phys. Rev. Lett. 68 (1992) 3896.

    Article  ADS  Google Scholar 

  24. S. B. Kim, J. Ma, M. H. W. Chan, Phys. Rev. Lett. 71 (1993) 2268.

    Article  ADS  Google Scholar 

  25. J. P. Romagnan, J. P. Laheurte, J. C. Noiray and W. F. Saam, J. Low Temp. Phys. 70 (1978) 425.

    Article  ADS  Google Scholar 

  26. P. A. Crowell, J. D. Reppy, S. Mukherjee, M. Ma, M. H. W. Chan and D. W. Schaefer, Phys. Rev. B51 (1995) 12712.

    Article  ADS  Google Scholar 

  27. N. Mulders and M. H. W. Chan, Phys. Rev. Lett. 75 (1995) 3705.

    Article  ADS  Google Scholar 

  28. L. Pricaupenko and J. Treiner, Phys. Rev. Lett. 74 (1995) 430; M. Bonisegni and D. M. Ceperley, Phys. Rev. Lett. 74 (1995) 2288.

    Article  ADS  Google Scholar 

  29. A. Maritan, M. Cieplak, M. Swift, F. Toigo and J. R. Banavar, Phys. Rev. Lett. 69 (1992) 221.

    Article  ADS  Google Scholar 

  30. A. Falicov and A. N. Berker, Phys. Rev. Lett. 74 (1995) 426.

    Article  ADS  Google Scholar 

  31. J. Yoon, N. Mulders, L. W. Hrubesh and M. H. W. Chan, elsewhere in the proceedings.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, M.H.W. Phase transitions of helium in aerogel. Czech J Phys 46 (Suppl 6), 2915–2922 (1996). https://doi.org/10.1007/BF02548091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02548091

Keywords

Navigation