International Journal of Primatology

, Volume 13, Issue 5, pp 545–570 | Cite as

Mandibular morphology and diet in the genusCebus

  • David J. Daegling
Article

Abstract

The influence of hard-object feeding on the size and shape of the mandibular corpus was investigated through a comparative biomechanical analysis of the jaws of adult femaleCebus apella andCebus capucinus. Computed tomography (CT) was used to discern the amount and distribution of cortical bone at M2 and symphyseal cross sections. From these data, the biomechanical properties of the mandibular corpus were determined to assess the structural rigidity of the jaw with respect to the bending, torsional, and shear stresses that occur during mastication and incision. The mandibles ofC. apella are demonstrably more robust than those ofC. capucinus in terms of biomechanical rigidity; differences in corporeal size rather than shape largely account for the enhanced robusticity in the sample ofC. apella. The differences that separate the two taxa probably represent a structural response to the mechanical demands of durophagy inC. apella. These observations suggest that specialization on a diet of hard objects may be expected to result in an overall hypertrophy of bony contours throughout the mandibular corpus.

Key Words

biomechanics computed tomography durophagy mastication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouvier, M. (1986a). Biomechanical scaling of mandibular dimensions in New World monkeys.Int. J. Primatol. 7: 551–567.Google Scholar
  2. Bouvier, M. (1986b). A biomechanical analysis of mandibular scaling in Old World Monkeys.Am. J. Phys. Anthropol. 69: 473–482.CrossRefGoogle Scholar
  3. Bouvier, M., and Hylander, W. L. (1981). Effect of bone strain on cortical bone structure in macaques (Macaca mulatta).J. Morphol. 167: 1–12.PubMedCrossRefGoogle Scholar
  4. Daegling, D. J. (1989). Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus.Am. J. Phys. Anthropol. 80: 91–106.PubMedCrossRefGoogle Scholar
  5. Daegling, D. J. (1990)Geometry and Biomechanics of Hominoid Mandibles, Ph.D. dissertation, State University of New York at Stony Brook.Google Scholar
  6. Demes, B., Preuschoft, H., and Wolff, J. E. A. (1984). Stress-strength relationships in the mandibles of hominoids. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.),Food Acquisition and Processing in Primates, New York, Plenum, pp. 369–390.Google Scholar
  7. Fleagle, J. G. (1988).Primate Adaptation and Evolution, Academic Press, San Diego.Google Scholar
  8. Fleagle, J. G., Mittermeier, R. A., and Skopec, A. L. (1981). Differential habitat use byCebus apella andSaimiri sciurus in Central Surinam.Primates 22: 361–367.CrossRefGoogle Scholar
  9. Frankel, V. H., and Burstein, A. H. (1965). Load capacity of tubular bones. In Kenedi, R. M. (ed.),Biomechanics and Related Engineering Topics, Oxford, Pergamon, pp. 381–396.Google Scholar
  10. Frankel, V. H., and Burstein, A. H. (1970).Orthopaedic Biomechanics, Lee and Febiger, Philadelphia.Google Scholar
  11. Freese, C. H., and Oppenheimer, J. R. (1981). The capuchin monkeys, genusCebus. In Coimbra-Filho, A. F., and Mittermeier, R. A. (eds.),Ecology and Behavior of Neotropical Primates, Rio de Janiero, Academia Brasiliera de Ciencas, pp. 331–390.Google Scholar
  12. Hounsfield, G. N. (1973). Computerized transverse axial scanning (tomography). I. Description of the system.Br. J. Radiol. 46: 1016–1022.PubMedCrossRefGoogle Scholar
  13. Hylander, W. L. (1979a). The functional significance of primate mandibular form.J. Morphol. 160: 223–240.PubMedCrossRefGoogle Scholar
  14. Hylander, W. L. (1979b). Mandibular function inGalago crassicaudatus andMacaca fascicularis: Anin vivo approach to stress analysis of the mandible.J. Morphol. 159: 253–296.PubMedCrossRefGoogle Scholar
  15. Hylander, W. L. (1984). Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses.Am. J. Phys. Anthropol. 64: 1–46.PubMedCrossRefGoogle Scholar
  16. Hylander, W. L. (1985). Mandibular function and biomechanical stress and scaling.Am. Zool. 25: 315–330.Google Scholar
  17. Hylander, W. L. (1988). Implications ofin vivo experiments for interpreting the functional significance of “robust” australopithecine jaws. In Grine, F. E. (ed.),Evolutionary History of the Robust Australopithecines, Aldine de Gruyter, New York, pp. 55–83.Google Scholar
  18. Hylander, W. L., and Crompton, A. W. (1986). Jaw movement and patterns of bone strain in the monkeyMacaca fascicularis.Arch. Oral Biol. 31: 841–848.PubMedCrossRefGoogle Scholar
  19. Hylander, W. L., Johnson, K. R., and Crompton, A. W. (1987). Loading patterns and jaw movements during mastication inMacaca fascicularis: A bone strain, electromyographic, and cineradiographic analysis.Am. J. Phys. Anthropol. 72: 287–314.PubMedCrossRefGoogle Scholar
  20. Izawa, K. (1975). Foods and feeding behavior of monkeys in the Upper Amazon Basin.Primates 16: 295–316.CrossRefGoogle Scholar
  21. Izawa, K. (1979). Foods and feeding behavior of wild black-capped capuchin (Cebus apella).Primates 20: 57–76.CrossRefGoogle Scholar
  22. Izawa, K., and Mizuno, A. (1977). Palm-fruit cracking behavior of wild black-capped capuchins.Primates 18: 773–792.CrossRefGoogle Scholar
  23. Kinzey, W. G. (1974). Ceboid models for the evolution of hominoid dentition.J. Hum. Evol. 3: 191–203.CrossRefGoogle Scholar
  24. Lovejoy, C. O., Burstein, A. H., and Heiple, K. G. (1976). The biomechanical analysis of bone strength: A method and its application to platycnemia.Am. J. Phys. Anthropol. 44: 489–506.PubMedCrossRefGoogle Scholar
  25. Moynihan, M. (1976).The New World Primates: Adaptive Radiation and the Evolution of Social Behavior, Languages and Intelligence. Princeton University Press, Princeton, N.J.Google Scholar
  26. Nagurka, M. L., and Hayes, W. C. (1980). An interactive graphics package for calculating cross-sectional properties of complex shapes.J. Biomech. 13: 59–64.PubMedCrossRefGoogle Scholar
  27. Nash, W. A. (1972).Strength of Materials, 2nd. ed., McGraw-Hill, New York.Google Scholar
  28. Osborn, J. W. (ed.) (1981).Dental Anatomy and Embryology, Blackwell Scientific, Oxford.Google Scholar
  29. Ravosa, M. J. (1991). Structural allometry of the prosimian mandibular corpus and symphysis.J. Hum. Evol. 20: 3–20.CrossRefGoogle Scholar
  30. Ruff, C. B., and Leo, F. P. (1986). Use of computed tomography in skeletal structure research.Yrbk. Phys. Anthropol. 29: 181–196.CrossRefGoogle Scholar
  31. Smith, R. J. (1983). The mandibular corpus of female primates: taxonomic, dietary, and allometric correlates of interspecific variations in size and shape.Am. J. Phys. Anthropol. 61: 315–330.PubMedCrossRefGoogle Scholar
  32. Sokal, R. R., and Rohlf, F. J. (1981).Biometry, 2nd ed., W. H. Freeman, New York.Google Scholar
  33. Teaford, M. F. (1985). Molar microwear and diet in the genusCebus.Am. J. Phys. Anthropol. 66: 363–370.PubMedCrossRefGoogle Scholar
  34. Terborgh, J. (1983).Five New World Primates: A Study in Comparative Ecology, Princeton University Press, Princeton, N.J.Google Scholar
  35. Thorington, R. W., Jr. (1967). Feeding and activity ofCebus andSaimiri in a Colombian forest. In Starck, D., Schneider, R., and Kuhn, H.-J. (eds.),Progress in Primatology, 1st Congress of the International Primatological Society, Gustav Fischer Verlag, Stuttgart, pp. 180–184.Google Scholar
  36. Wolff, J. E. A. (1984). A theoretical approach to solve the chin problem. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.),Food Acquisition and Processing in Primates, Plenum, New York, pp. 391–405.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • David J. Daegling
    • 1
  1. 1.Department of AnthropologyYale UniversityNew Haven

Personalised recommendations