Skip to main content
Log in

Forearm elongation in gibbons: Hypothesis and preliminary results

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The characteristic long forelimbs of gibbons are a consequence of elongation of all segments (hand, forearm, and arm) but especially the forearm. While the hand is limited in size by its prehensile role, both the arm and the forearm do not seem to be directly limited in a similar manner. Why is the elongation concentrated specifically in the forearm? One hypothesis, originally applied to cursorial ungulates, relates to the need to enhance angular velocity during the swing phase at a minimum cost by distributing the heaviest forelimb loads proximally near the shoulder joint. This appears to be a plausible explanation despite complicating factors associated with competing functions of the forelimb during the support phase of arm-swinging and the fact that the animal behaviorally adjusts inertial properties of its forelimb by flexing it while reaching for the support. In order to test this hypothesis, the forelimb was modeled as a series of uniform cylinders from which the radii of gyration (k) were calculated. After converting into relative values (%k), they were compared (1) interspecifically, among two hylobatids, an orangutan, common chimpanzee, and gorilla, and (2) hypothetically, among imaginary gibbons with brachial indices extending beyond the range found in hylobatids. The results of both tests were equivocal, suggesting that forelimb mass distribution may not be the dominant factor influencing elongation of the forearms in gibbons. Even though gibbons are unique in their great dependence upon arm-swinging, efficient generation of high angular velocities during the swing phase does not appear to be the overriding function beyond others related to support, propulsion, and prehension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, K. N., Takahashi, K., Harrigan, T. P., and Chao, E. Y. (1984). Determination of muscle orientations and moment arms.J. Biomech. Eng. 106: 280–282.

    Article  PubMed  CAS  Google Scholar 

  • Dempster, W. T., and Gaughran, G. R. L. (1967). Properties of body segments based on size and weight.Am. J. Anat. 120: 33–54.

    Article  Google Scholar 

  • Fleagle, J. G. (1974). Dynamics of a brachiating siamang.Nature 248: 259–260.

    Article  PubMed  CAS  Google Scholar 

  • Fleagle, J. G. (1977a). Brachiation and biomechanics: The siamang as example.Malay. Nat. J. 30: 45–51.

    Google Scholar 

  • Fleagle, J. G. (1977b). Locomotor behavior and skeletal anatomy of sympatric Malaysian leaf-monkeys (Presbytis obscura andPresbytis melalophos).Yrbk. Phys. Anthrop. 20: 440–454.

    Google Scholar 

  • Hildebrand, M. (1985). Walking and running. In Hildebrand, M., Bramble, D. M., Liem, K. F., and Wake, D. B. (eds.)Functional Vertebrate Morphology, Belknap Press, Cambridge, Mass., pp. 38–57.

    Google Scholar 

  • Hildebrand, M., and Hurley, J. P. (1985). Energy of the oscillating legs of a fast-moving cheetah, pronghorn, jackrabbit, and elenhant.J. Morphol., 184: 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, R. H., and Davy, D. T. (1975). An investigation of muscle lines of action about the hip: A centroid line approach vs the straight line approach.J. Biomech. 8: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Jungers, W. L. (1976).Osteological Form and Function: The Appendicular Skeleton of “Megaladapis,” A Subfossil Prosimian from Madagascar (Primates, Lemuroidea), Ph.D. thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Jungers, W. L. (1979). Locomotion, limb proportions, and skeletal allometry in lemurs and lorises.Folia Primatol. 32: 8–28.

    PubMed  CAS  Google Scholar 

  • Jungers, W. L., and Stern, J. T. (1984). Kinesiological aspects of brachiation in lar gibbons. In Preuschoft, H., Chivers, D. J., Brockelman, W. Y., and Creel, N. (eds.),The Lesser Apes. Evolutionary and Behavioural Biology, Edinburgh University Press, Edinburgh, pp. 119–134.

    Google Scholar 

  • Keith, A. (1919).The Engines of the Human Body. Williams and Norgate, London.

    Google Scholar 

  • Maynard Smith, J., and Savage, R. J. (1956). Some locomotory adaptations in mammals.J. Linn. Soc. Lond. Zool. 42: 603–622.

    Article  Google Scholar 

  • Morbeck, M. E., and Zhilman, A. (1988). Body composition and limb proportions. In Schwartz, J. H. (ed.),Orang-utan Biology, Oxford University Press, Oxford, pp. 285–297.

    Google Scholar 

  • Myers, M. J., and Steudel, K. (1985). Effect of limb mass and its distribution on the energetic cost of running.J. Exp. Biol. 116: 363–373.

    PubMed  CAS  Google Scholar 

  • Parsons, P. E., and Taylor, C. R. (1977). Energetics of brachiation versus walking: A comparison of a suspended and an inverted pendulum mechanism.Physiol. Zool. 50: 182–188.

    Google Scholar 

  • Preuschoft, H., and Demes, B. (1984). Biomechanics of brachiation. In Preuschoft, H., Chivers, D. J., Brockelman, W. Y., and Creel, N. (eds.),The Lesser Apes. Evolutionary and Behavioural Biology, Edinburgh University Press, Edinburgh, pp. 96–118.

    Google Scholar 

  • Rumbaugh, D. M., Wolkin, J. R., Wilkerson, B. J., and Myers, R. H. (1976). A hybrid ape (Hylobates lar moloch × Symphalangus syndactylus).Lab. Primate Newsl. 15: 32.

    Google Scholar 

  • Schultz, A. H. (1930). The skeleton of the trunk and limbs of higher primates.Hum. Biol. 2: 303–438.

    Google Scholar 

  • Schultz, A. H. (1933). Die Körperprotionen der erwachsenen catarrhinen Primaten, mit spezieller Berücksichtigung der Menschenaffen.Anthropol. Anzeig. 10: 154–185.

    Google Scholar 

  • Shafer, D. A., Myers, E. H., and Saltzman, D. (1984). Biogenetics of the siabon (gibbon-siamang hybrids). In Preuschoft, H., Chivers, D. J., Brockelman, W. Y., and Creel, N. (eds.),The Lesser Apes. Evolutionary and Behavioural Biology, Edinburgh University Press, Edinburgh, pp. 486–497.

    Google Scholar 

  • Takahashi, L. K. (1987).Morphometric and Allometric Analyses of the Forelimbs of Hylobates and Ateles, Ph.D. thesis, University of Chicago, Chicago.

    Google Scholar 

  • Takahashi, L. K. (1989a). Forearm elongation in arm-swinging primates.Am. J. Phys. Anthropol. 78: 313 (abstr.).

    Google Scholar 

  • Takahashi, L. K. (1989b). Morphological basis of arm-swinging; Multivariate analyses of the forelimbs ofHylobates andAteles.Folia Primatol. 54: 70–85.

    Article  Google Scholar 

  • Taylor, C. R., Shkolnik, A., Dmi'El, R., Baharav, D., and Borut, A. (1974). Running in cheetahs, gazelles, and goats: energy cost and limb configuration.Am. J. Physiol. 227: 848–850.

    PubMed  CAS  Google Scholar 

  • Zhilman, A. (1984). Body build and tissue composition inPan paniscus andPan troglodytes with comparisons to other hominoids. In Susman, R. L. (ed.)The Pygmy Chimpanzee: Evolutionary Morphology and Behavior, Plenum Press, New York, pp. 179–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, L.K. Forearm elongation in gibbons: Hypothesis and preliminary results. International Journal of Primatology 12, 599–614 (1991). https://doi.org/10.1007/BF02547672

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547672

Keywords

Navigation