Skip to main content
Log in

Relationship between heat of immersion and surface Gibbs energy of fluorite and cassiterite

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Calorimetric measurements were made of the heat of immersion in water of cassiterite that was either untreated or treated with 60% HNO3. The heats of immersion of cassiterite and fluorite were also calculated theoretically from the surface Gibbs energy components, and compared with the heat of immersion measured for cassiterite and that taken from the literature for fluorite. The results of the measurements and calculation revealed that the heat of immersion depends on the degree of hydration of the surface of cassiterite and fluorite. It was also found that it is possible to predict the heats of immersion in water of cassiterite and fluorite from the Lifshitz-van der Waals and acid-base components of the surface Gibbs energy.

Zusammenfassung

Mittels kalorimetrischen Methoden wurde die Immersionswärme in Wasser von unbehandeltem und mit 60% HNO3 behandeltem Zinnstein gemessen. Die Immersionswärme von Zinnstein und Flußspat wurden auch theoretisch anhand der Gibbs'schen Oberflächenenergiekomponenten berechnet und mit der für Zinnstein gemessenen und für Flußspat der Literatur entnommenen Immersionswärme verglichen. Der Vergleich von Messung und Berechnung erwies, daß die Immersionswärme vom Grad der Hydratation der Oberfläche von Zinnstein und Flußspat abhängt. Man fand weiterhin, daß für Zinnstein und Flußspat die Immersionswärme in Wasser anhand der Lifshitz van der Waals und Säure-Basenkomponenten der Gibbs'schen Oberflächenenergie vorhergesagt werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Fowkes, Ind. Eng. Chem., 56/12 (1964) 40.

    Article  Google Scholar 

  2. S. Wu, in Polymeric Blends' (D. R. Paul and S. Newman, Eds.), vol. 1, Academic Press, New York 1976, p. 243.

    Google Scholar 

  3. K. L. Mittal, in Adhesion Science and Technology' (L. H. Lee, Ed.), vol. 9A, Plenum, New York 1976, p. 129.

    Google Scholar 

  4. R. J. Good and E. Elbing, Ind. Eng. Chem., 62 (1970) 54.

    Article  CAS  Google Scholar 

  5. P. J. Sell and A. W. Neumann, Angew. Chem., 78 (1966) 321.

    CAS  Google Scholar 

  6. B. Jańczuk and T. Białopiotrowicz, J. Colloid Interface Sci., 127 (1989) 189.

    Article  Google Scholar 

  7. C. J. van Oss, R. J. Good and M. K. Chaudhury, Sep. Sci. Technol., 22 (1986) 1.

    Google Scholar 

  8. E. Chibowski and A. Waksmundzki, J. Colloid Interface Sci., 64 (1978) 380.

    Article  CAS  Google Scholar 

  9. E. Chibowski and A. Waksmundzki, J. Colloid Interface Sci. 64 (1978) 213.

    Article  Google Scholar 

  10. P. Staszczuk, B. Jańczuk and E. Chibowski, Mat. Chem. Phys., 12 (1985) 469.

    Article  CAS  Google Scholar 

  11. A. C. Zettlemoyer, Ind. Eng. Chem., 57/2 (1965) 27.

    Google Scholar 

  12. A. C. Zettlemoyer, in ‘Hydrophobic Surface’ (F. M. Fowkes, Ed.), Academic Press, New York, 1969, 1.

    Google Scholar 

  13. B. Bilinski and W. Wójcik, Colloids Surf., 36 (1989) 77.

    Article  CAS  Google Scholar 

  14. B. Jańczuk, W. Wójcik, A. Zdziennicka and F. González-Caballero, Mater. Chem. Phys., 31 (1992) 235.

    Article  Google Scholar 

  15. J. M. Bruque, M. L. González-Martín and C. Dorado, Thermochim. Acta, 197 (1992) 407.

    Article  CAS  Google Scholar 

  16. R. Zimmermann, G. Wolf and H. A. Scheider, Colloids Surf., 22 (1987) 1.

    Article  CAS  Google Scholar 

  17. J. J. Chessick and A. C. Zettlemoyer, Adv. Catal., 11 (1959) 263.

    Article  CAS  Google Scholar 

  18. A. W. Adamson, ‘Physical Chemistry of Surfaces’ 5th edition, Wiley Interscience, New York, 1990.

    Google Scholar 

  19. B. Jańczuk, J. M. Bruque, M. L. González-Martín and J. Moreno del Pozo, J. Colloid Interface Sci., 161 (1993) 209.

    Article  Google Scholar 

  20. B. Jańczuk, M. L. González-Martín, J. M. Bruque and J. Moreno del Pozo, J. Colloids Surf. 75 (1993) 163.

    Article  Google Scholar 

  21. C. J. van Oss, L. Hu, M. Chaudhury and R. J. Good, J. Colloid Interface Sci., 128 (1989) 315.

    Google Scholar 

  22. C. J. van Oss, R. J. Good and H. Busscher, J. Dispersion Sci. Technol., 11 (1990) 75.

    Google Scholar 

  23. L. A. Girifalco and R. J. Good, J. Phys. Chem., 62 (1957) 304.

    Google Scholar 

  24. R. J. Good, L. A. Girifalco and G. Kraus, J. Phys. Chem., 63 (1958) 141.

    Google Scholar 

  25. B. Jańczuk, E. Chibowski and P. Staszczuk, J. Colloid Interface Sci., 96 (1983) 1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Martín, M.L., Jańczuk, B. & Bruque, J.M. Relationship between heat of immersion and surface Gibbs energy of fluorite and cassiterite. Journal of Thermal Analysis 44, 1087–1094 (1995). https://doi.org/10.1007/BF02547537

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547537

Keywords

Navigation