Skip to main content
Log in

The influence of strontium on characteristic factors of bone

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Bones of experimental rats fed a high strontium diet (0.4% Sr, 0.2% Ca, 0.4% P) and those of control rats fed a diet essentially the same but without supplemental strontium (0.4% Ca, 0.4% P) were analyzed for certain organic and mineral constituents. The femora of experimental animals had a significantly greater proportion of hexosamine as cetyl pyridinium precipitable material (glycosaminoglycans) than did those of control animals, whereas no difference of hydroxyproline (collagen) content was found. Separation of powdered, pooled bones by the flotation method revealed that over 80% of normal bone and only about 50% of experimental bone had a specific gravity of 1.87 or greater. The incorporation of strontium was accompanied by a marked reduction of bone ash, by elevated magnesium and potassium, and by depressed calcium contents of the ash as compared to normal bone.

Résumé

Les os de rats soumis à une alimentation riche en strontium (0.4% Sr, 0.2% Ca, 0.4% P) et ceux de rats témoins, alimentés de la même façon, sans adjonction de strontium (0.4% Ca, 0.4% P), ont été analysés pour certains constituants organiques et inorganiques. Le fémur des animaux, soumis au strontium, contient une proportion significativement plus élevée d’hexosamine sous la forme d’un matériel précipitable par le cetyl pyridinium (glycosaminoglycanes); cependant aucune différence en hydroxyleproline (collagène) n’a été notée. Le fractionnement de poudres d’os par la méthode de flotation montre que plus de 80% de l’os normal et seulement 50% de l’os des animaux soumis au strontium ont un poids spécifique de 1.87 ou supérieur. L’incorporation du strontium s’accompagne d’une part, d’une diminution marquée de la cendre d’os, par suite de l’augmentation du magnésium et potassium, et d’autre part, de la diminution du contenu en calcium de la cendre par rapport à l’os normal.

Zusammenfassung

Die Knochen von Versuchsratten, welche eine hohe Strontium-Diät erhielten (0,4% Sr; 0,2% Ca; 0,4% P) und die Knochen von Kontrollratten, welche praktisch dieselbe Diät ohne zusätzliches Strontium erhielten (0,4% Ca; 0,4% P), wurden auf bestimmte organische und Mineralbestandteile untersucht. Die Femora der Versuchstiere enthielten einen bedeutend größeren Anteil an Hexosamin, das mit Cetylpyridin (Glycosaminoglycanen) ausgefällt werden kann, als die jenigen der Kontrolltiere, jedoch wurde beim Hydroxyprolingehalt (Collagen) kein Unterschied gefunden. Die Trennung von pulverisierten, gepoolten Knochen durch die Dichtegradientmethode zeigte, daß über 80% des normalen Knochens und nur etwa 50% des experimentellen Knochens ein spezifisches Gewicht von 1,87 und mehr aufwiesen. Die Einnahme von Strontium verursachte eine bedeutende Abnahme der Knochenasche, eine Zunahme von Magnesium und Kalium und einen verminderten Calciumgehalt in der Asche im Vergleich zu normalen Knochen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Analytical methods for atomic absorption spectrophotometry. Revised edition, Norwalk, Connecticut: Perkin-Elmer Corp. 1968.

  2. Brown, W. E.: Crystal growth of bone mineral. Clin. Orthop.44, 205–220 (1966).

    PubMed  CAS  Google Scholar 

  3. Campo, R. D., Tourtellotte, C. D.: The composition of bovine cartilage and bone. Biochim. biophys. Acta (Amst.)141, 614–624 (1967).

    CAS  Google Scholar 

  4. Collin, R. L.: Precipitate formation in the strontium-phosphate system. Science151, 1386–1388 (1966).

    Article  PubMed  CAS  Google Scholar 

  5. Fiske, C. H., Subba Row, Y.: Determination of phosphorus. J. biol. Chem.66, 375–400 (1925).

    CAS  Google Scholar 

  6. Francis, M. D., Webb, N. C.: Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calc. Tiss. Res.6, 335–342 (1971).

    Article  CAS  Google Scholar 

  7. Herring, G. M.: The chemical structure of tendon cartilage, dentin and bone matrix. Clin. Orthop.60, 261–299 (1968).

    PubMed  CAS  Google Scholar 

  8. Hjertquist, S.-O., Vejlens, L.: The glycosaminoglycans of dog compact bone and epiphyseal cartilage in the normal state and in experimental hyperparathyroidism. Calc. Tiss. Res.2, 314–333 (1968).

    Article  CAS  Google Scholar 

  9. Johnson, A. R.: Improved method of hexosamine determination. Analyt. Biochem.44, 628–635 (1971).

    Article  PubMed  CAS  Google Scholar 

  10. Johnson, A. R., Armstrong, W. D., Singer, L.: The incorporation and removal of large amounts of strontium by physiologic mechanisms in mineralized tissues of the rat. Calc. Tiss. Res.,2, 242–252 (1968).

    Article  CAS  Google Scholar 

  11. Johnson, A. R., Armstrong, W. D., Singer, L.: The solubility of the mineral phase in the rat of powdered bone and dentin laden with strontium. Arch. oral Biol.15, 401–409 (1970).

    Article  PubMed  CAS  Google Scholar 

  12. Johnson, A. R., Armstrong, W. D., Singer, L.: The exchangeability of calcium and strontium of bonein vitro. Calc. Tiss. Res.6, 103–112 (1970).

    Article  CAS  Google Scholar 

  13. Kinney, E. M., McCollum, E. V.: A study of the rate of deposition and paths of absorption of strontium in the rat. J. Pharmacol. exp. Ther.21, 165–176 (1923).

    CAS  Google Scholar 

  14. Neuman, W. F., Toribara, T. Y., Mulryan, B. J.: Synthetic hydroxyapatite crystals. I. Sodium and potassium fixation. Arch. Biochem. Biophys.98, 384–390 (1962).

    Article  CAS  Google Scholar 

  15. Neuman, W. F., Bjornerstedt, R., Mulryan, B. J.: Synthetic hydroxyapatite crystals. II. Aging and strontium incorporation. Arch. Biochem. Biophys.101, 215–224 (1963).

    Article  CAS  Google Scholar 

  16. Newesely, H., Höhling, H.-J.: Recent findings on the crystal structures of hypomineralized and carious teeth. Adv. Fluorine Res. and Dental Caries Prevention3, 131–135 (1964).

    Google Scholar 

  17. Prokop, D. J., Udenfriend, S.: A specific method for the analysis of hydroxyproline in tissues and urine. Analyt. Biochem.1, 228–239 (1960).

    Article  Google Scholar 

  18. Robinson, R. A.: Chemical analysis and electron microscopy of bone. In: Bone as a tissue, edit. by Rodahl, K., Nicholson, J. T., and Brown, E. M., Jr., p. 186–250, New York: McGraw-Hill Book Company, Inc. 1960.

    Google Scholar 

  19. Scott, J. E.: Aliphatic ammonium salts in the assay of acidic polysaccharides from tissues. In: Methods of biochemical analysis, vol. 8, p. 145–197, edit. by Glick, D. New York: John Wiley & Sons. 1960.

    Chapter  Google Scholar 

  20. Storey, E. Strontium “rickets”: bone, calcium and strontium changes. Aust. Ann. Med.10, 213–222 (1961).

    PubMed  CAS  Google Scholar 

  21. Storey, E., West, V. C.: Factors modifying Ca/Sr discrimination by bone and synthetic “apatitic” mineralin vitro. Calc. Tiss. Res.6, 290–300 (1971).

    Article  CAS  Google Scholar 

  22. Termine, J. D., Wuthier, R. E., Posner, A. S.: Amorphous-crystalline mineral changes during endochondral and periosteal bone formation. Proc. Soc. exp. Biol. (N.Y.)125, 4–9 (1967).

    CAS  Google Scholar 

  23. Triffitt, J. T., Sutton, A.: Strontium and calcium contents of bone density fractions. Calc. Tiss. Res.4, 174–179 (1969).

    Article  CAS  Google Scholar 

  24. Zipkin, I.: The inorganic composition of bones and teeth. In: Biological calcification, edit. by Schraer, H., p. 69–103. New York: Appleton-Century-Crofts Educational Division/Meredith Corporation 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Department of Pediatrics, School of Medicine

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A.R. The influence of strontium on characteristic factors of bone. Calc. Tis Res. 11, 215–221 (1973). https://doi.org/10.1007/BF02547220

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547220

Key words

Navigation