Skip to main content
Log in

Thermal decomposition of uranyl nitrate hexahydrate

A thermal analysis—mass spectrometry study

  • Published:
Journal of Thermal Analysis Aims and scope Submit manuscript

Abstract

TG-DTA-EGA studies have shown that anhydrous uranyl nitrate cannot be obtained by thermal decomposition of uranyl nitrate hexahydrate. Hydrolysis and polymerization of the salt during dehydration resulted in hydroxynitrates which decomposed in multiple steps with the evolution of oxides of nitrogen and water. The extent of hydrolysis dependend on the sample size, heating rate and nature of sample containment. Large samples on decomposition at relatively high heating rates showed evolution of nitric oxide even above 500°C. Infrared studies on the residues prepared at various temperatures supported the conclusions.

Zusammenfassung

TG-DTA-EGA-Untersuchungen erwiesen, daß wasserfreies Uranylnitrat nicht durch die thermische Zersetzung von Uranylnitrathexahydrat erhalten werden kann. Während der Dehydratation stattfindende Hydrolyse und Polymerisation des Salzes führen zu Hydroxynitraten, die sich in mehreren Schritten unter Freisetzung von Stickoxiden und Wasser zersetzen. Das Ausmaß der Hydrolyse hing von Probengröße, Aufheizgeschwindigkeit und Art der Probenkontrolle ab. Große Proben zeigten bei der Zersetzung bei relativ, hohen Aufheizgeschwindigkeiten die Freisetzung von Stickstoffmonoxid sogar oberhalb 500°C. Die Schlußfolgerungen wurden durch IR-Untersuchungen der bei verschiedenen Temperaturen erhaltenen Rückstände bestätigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Ondrejcin and T. P. Garrett, Jr., J. Phys. Chem., 65 (1961) 470.

    CAS  Google Scholar 

  2. S. Hartland and R. J. Nesbitt, J. Appl. Chem., 14 (1964) 406.

    Article  CAS  Google Scholar 

  3. W. Lodding and L. Ojamaa, J. Inorg. Nucl. Chem., 27 (1965) 1261.

    Article  CAS  Google Scholar 

  4. W. H. Smith, J. Inorg. Nucl. Chem., 30 (1968) 1761.

    Article  CAS  Google Scholar 

  5. F. Weigel, ‘The Chemistry of the Actinide Elements’, 2nd Ed., Ed. J. J. Katz, G. T. Seaborg, and L. R. Morss, Chapmann and Hall, London 1986, Vol. 1, p. 361.

    Google Scholar 

  6. J. L. Woodhead, A. M. Deane, A. C. Fox and J. M. Fletcher, J. Inorg. Nucl. Chem., 28 (1966) 2175.

    Article  CAS  Google Scholar 

  7. M. Åberg, Acta Chem. Scand., Ser. A, 32 (1978) 101.

    Article  Google Scholar 

  8. C. C. Addison, H. A. J. Champ, N. Hodge and A. H. Norbury, J. Chem. Soc., (1964) 2354.

  9. Chemical Abst., Vol. 108, 1988, Abst. No. 115138s.

  10. P. V. Ravindran, P. S. Dhami, K. V. Rajagopalan and M. Sundaresan, Thermochim. Acta, 197 (1992) 91.

    Article  CAS  Google Scholar 

  11. P. V. Ravindran, J. Rangarajan and A. K. Sundaram, Thermochim. Acta, 147 (1989) 331.

    Article  CAS  Google Scholar 

  12. J. C. Taylor and M. H. Mueller, Acta Cryst., 19 (1965) 536.

    Article  CAS  Google Scholar 

  13. B. M. Gatehouse and A. E. Comyns, J. Chem. Soc., (1958) 3965.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, K.V., Ravindran, P.V. & Radhakrishnan, T.P. Thermal decomposition of uranyl nitrate hexahydrate. Journal of Thermal Analysis 44, 89–96 (1995). https://doi.org/10.1007/BF02547137

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02547137

Keywords

Navigation