Thermochemical sulfate reduction a review

Abstract

The high concentrations of hydrogen sulfide found in many oil and gas fields is thought to arise from the oxidation of petroleum hydrocarbons by sulfate—a reaction that reduces the value of the resource. This review, undertaken in order to better understand the geochemistry of TSR reaction in oil field sediments, covers the relevant information on thermochemical sulfate reduction (TSR) to 1991. The theoretical and experimental aspects of TSR reactions (including sulfur and carbon isotope studies) are reviewed and their significance to the geochemical system discussed. The present review agrees with previous suggestions that biochemical reduction of sulfate dominates in sedimentary environments below 120°C, and supports the possibility that reactive sulfur species will oxidize certain organic molecules at meaningful rates in geochemically reasonable reaction periods at temperatures above 175°C. We conclude that under typical petroleum reservoir reaction conditions, both elemental sulfur and polysulfides are capable of oxidizing some organic molecules under basic conditions. But that sulfate alone will not react unless lower oxidation state sulfur is present. The possible interaction of low-valence-state sulfur with sulfate to form TSR active oxidants is examined. both H2S and SO 2−4 are required for the formation of active polysufide reductants (e.g. thiosulfate or polythionates) in TSR systems. Such intermediates can serve to lower the overall activation energy of the oxidation of hydrocarbons by sulfate via thermal generation of sulfur radicals that can function as TSR active oxidants in many oil field sediments. We suggest that some proposed chemical mechanisms for TSR need to be experimentally verified and the results re-interpreted with respect to TSR relations in geologic systems.

Zusammenfassung

Die hohe Konzentration von Schwefelwasserstoff, die man in zahlreichen Öl- und Gasfeldern findet, wird der Oxidation von Petrol-Kohlenwasserstoffen durch Sulfat zugeschrieben, einer Reaktion, die den Wert der Vorkommen reduziert. Vorliegender Rückblick, der einem besseren Verständnis der Geochemie von TSR-Reaktionen in Ölfeldsedimenten dienen soll, umfaßt die relevanten Informationen von thermochemischen Sulfatreduktionen (TSR) bis zum Jahre 1991. Es wird ein Überblick über theoretische und praktische Aspekte von TSR-Reaktionen (einschließlich der Untersuchungen von Schwefel- und Kohlenstoffisotope) gegeben und ihre Bedeutung für geochemische Systeme diskutiert. Dieser Überblick stimmt mit vorangehenden Überlegungen dahingehend überein, daß die biochemische Reduktion von Sulfaten in sedimentärer Umgebung unter 120°C dominiert und die Möglichkeit unterstützt, daß reaktionsfreudige Schwefelverbindungen bestimmte organische Moleküle oberhalb 175°C in geochemisch sinnvollen Reaktionszeiten in beträchtlichem Ausmaße oxidieren. Es wurde geschlußfolgert, daß sowohl elementarer Schwefel als auch Polysulfide unter typischen Petrollagerstättenbedingungen in der Lage sind, einige organische Moleküle zu oxidieren, daß aber Sulfat allein nicht reagiert, solange kein Schwefel mit niedrigerer Oxidationsstufe vorhanden ist. Es wird die Möglichkeit einer Wechselwirkung zwischen niedervalentem Schwefel und Sulfat geprüft, die zur Bildung TSR-aktiver Oxidantien führt. In TSR-Systemen ist sowohl die Gegenwart von H2S als auch von SO4 2− ist für die Bildung aktiver Polysulfid-Reduktionsmittel (z.B. Thiosulfat oder Polythionat) erforderlich. Derartige Zwischenprodukte können über die thermische Generierung von Schwefelradikalen, die in zahlreichen Ölfeldsedimenten als TSR-aktive Oxidantien fungieren können, zu einer Herabsetzung der resultierenden Aktivierungsenergie der Oxidation von Kohlenwasserstoffen durch Sulfat führen. Es wird darauf hingedeutet, daß einige für TSR vorgeschlagene chemische Mechanismen experimentell überprüft und die Ergebnisse im Hinblick auf TSR-Reaktionen in geologischen Systemen neu interpretiert werden sollten.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Z. Aizenshtat, A. Stoler, Y. Cohen and H. Nielsen, The geochemical sulfur enrichment of recent organic matter by polysulfides in the Solar Lake (Sinai). Advances in Organic Geochemistry,Ed. Byoroy et al. J. Wiley & Sons. 1983, pp. 279–289.

  2. 2

    Z. Aizenshtat, G. Lipiner and Y. Cohen Biogeochemistry of carbon and sulfur cycles in the microbial mats of the Solar Lake (Sinai), Microbial Mats: Stromatolites, Eds. Cohen, Y., Castenholts, R. W. and Halvorson, H. O.; R. Alan Liss Inc., New York 1984, pp. 281–312.

    Google Scholar 

  3. 3

    Z. Aizenshtat, Microbial Mats: Chemical post mortem, in: Microbial Mats, Chp. 37, section IV. Biogeochemistry of microbial mats. Eds. Y. Cohen and E. Rosenberg, Byrd Am. Soc., Microbiology Books, Washington D. C., 1989, pp. 303–336.

    Google Scholar 

  4. 4

    W. L. Orr, Am. Assoc. Petrol. Geol. Bull., 50 (1974) 2295.

    Google Scholar 

  5. 5

    W. L. Orr, Rate and mechanism of non-microbial sulfate reduction. 95th GSA Annual Meeting Abst. New Orleans, October, paper 213, 1982, p. 580.

  6. 6

    P. A. Trudinger, L. A. Chambers and J. W. Smith, Can. J. Earth Sci., 22 (1985) 1910.

    CAS  Google Scholar 

  7. 7

    K. Kiyosu, H. R. Krouse and C. A. Viau, (1990) Am. Chem. Soc., (1990) 633.

  8. 8

    L. A. Anisimov, Conditions of abiogenic reduction of sulfate in oil-an-gas bearing basins. Trans. from geokhimiya No 11, 1692–1702 Geochemistry International, 1978, pp. 15, 63–71.

    Google Scholar 

  9. 9

    C. J. Kaiser, Chemical and isotopic kinetics of sulfate reduction by organic matter under hydrothermal conditions. Ph. D. Thesis 1988, Pennsylvania State University.

  10. 10

    J. C. Mooris and W. Stumm, Redox equilibria and measurements of potentials in the aquatic environment. In: Equilibrium concepts in natural Water Systems. Advances in Chemistry Series #67. American Chemical Society, Washington D. C. 1967, pp. 270–285.

    Google Scholar 

  11. 11

    K. Bostrom, SomepH-controlling redox reactions in natural waters. ibid 4n: 1967, pp. 286–311.

    Google Scholar 

  12. 12

    W. G. Toland, J. Am. Chem. Soc., 82 (1960) 1911.

    Article  Google Scholar 

  13. 13

    I. R. Kaplan, R. E. Sweeney and A. Nissenbaum, Sulfur Isotope Studies on Red Sea Geothermal Brines and Sediments. Hot Brines and Geothermal Brines and Sediments. Eds E. T. Degens and D. A. Ross, Springer, New York 1969, pp. 474–498.

    Google Scholar 

  14. 14

    M. B. Goldhaber and I. R. Kaplan, Marine Chem., 9 (1980) 97.

    Article  Google Scholar 

  15. 15

    H. G. Machel, Geological Society Special Publication, 36 (1987) 15.

    Google Scholar 

  16. 16

    M. A. Williamson and J. D. Rimstidt, Thermodynamic and kinetic controls on the aqueous oxidation of sulfide minerals, V. M. Goldschmidt International Conference for the Advancement of Geochemistry, Programs with Abstract 1990, p. 91.

  17. 17

    V. I. Spitsyn and M. A. Meyerov, Zh. Obsch. Khim., 22 (1952).

  18. 18

    J. W. Smith and B. D. Batts, Geochim. Cosmochim. Acta, 38 (1974) 121.

    Article  CAS  Google Scholar 

  19. 19

    E. S. Bastin, Am. Assoc. Petrol. Geol. Bull., 10 (1926) 1270.

    Google Scholar 

  20. 20

    H. O. Hoffmann and W. Mostowitch, Trans. A. I. E. M. Vol. XLI (1910) 763.

    Google Scholar 

  21. 21

    R. L. Ginter, Am. Assoc. Petrol. Geol. Bull., 14 (1930) 139.

    CAS  Google Scholar 

  22. 22

    W. A. Pryor, Oxidation by polysulfides to form aldehydes carboxylic acids or carboxyamides, Mechanisms of Sulfur Reactions, Chap. 7 McGraw-Hill, 1962, pp. 127–138.

  23. 23

    W. G. Toland, D. L. Hagmann, J. B. Wilkes and F. J. Brutschy, J. Am. Chem. Soc., 80 (1958), 5423.

    Article  CAS  Google Scholar 

  24. 24

    W. A. Pryor, J. Am. Chem. Soc., 80 (1958) 6481.

    Article  CAS  Google Scholar 

  25. 25

    H. V. Tartar and C. Z. Draves, J. Am. Chem. Soc., 46 (1924) 574.

    Article  CAS  Google Scholar 

  26. 26

    W. L. Orr, Geologic and Geochemical Controls on the Distribution of Hydrogen Sulfide in Natural Gas, Advances in Organic Geochemistry (Ed. R. Campos and J. Goni) Enadimsa Madrid, Spain, 1977, pp. 571–579.

    Google Scholar 

  27. 27

    Y. Kiyosu, Chem. Geol., 30 (1980) 47.

    Article  CAS  Google Scholar 

  28. 28

    Y. Rubinsztain, P. Ioselis, R. Ikan and Z. Aizenshtat, Investigation on Structural Units of Melanoidins in: Advances in Organic Geochemistry (1983) Eds. P. A. Schenk, J. W. de Leeuw and G. W. M. Lumbach, Vol. 6, Org. Geochem., 1984, pp. 791–804.

  29. 29

    R. T. LaLonde, Am. Chem. Soc., (1990) 68.

  30. 30

    H. Ohmoto and A. C. Lasaga, Geochim. Cosmochim. Acta, 46 (1982) 1727.

    Article  CAS  Google Scholar 

  31. 31

    T. A. Drean, Reduction of sulfate by Methane, Xylene and Iron at Temperatures of 175 to 350°C. M. Sc. Thesis, Pennsylvania State University, University Park, PA 90p, 1978.

    Google Scholar 

  32. 32

    P. A. Trudinger, J. Bacteriology, 104 (1970) 158.

    CAS  Google Scholar 

  33. 33

    G. N. Lewis, M. Randall and F. R. V. Bichowsky, J. Am. Chem. Soc., 40 (1918) 356.

    Article  CAS  Google Scholar 

  34. 34

    S. A. Igumnov, Geokhimiya, 4 (1976) 497.

    Google Scholar 

  35. 35

    W. J. Stahl, Chem. Geol., 20 (1977) 121.

    Article  CAS  Google Scholar 

  36. 36

    W. J. Stahl, Geochem. Cosmochim. Acta, 42 (1978) 1573.

    Article  CAS  Google Scholar 

  37. 37

    E. M. Galimov, The Biological Fractionation of Isotopes, Academic Press, Orlando FL, 1985.

    Google Scholar 

  38. 38

    M. Schidlowski, Nature, 333 (1988) 313.

    Article  CAS  Google Scholar 

  39. 39

    M. B. Goldhaber and I. R. Kaplan, The sulfur cycle in: The Sea (ed. E. D. Goldberg), Vol. 5 Wiley Chichester, 1974, pp. 569–655.

  40. 40

    H. Nielsen, Isotopes in Nature (sulfur) in Handbook of Geochemistry (ed. K. H. Wedepohl) Vol. II-I, sec 16-B Springer-Verlag, 1978.

  41. 41

    D. Dinur, B. Spiro and Z. Aizenshtat, Chem. Geol., 31 (1980) 37.

    Article  CAS  Google Scholar 

  42. 42

    I. R. Kaplan, Stable isotope of sulfur, nitrogen and deuterium in recent marine environments. in: Stable Isotopes in Sedimentary Geology, 1983.

  43. 43

    W. L. Orr, Org. Geochem., 10 (1986) 499.

    Article  CAS  Google Scholar 

  44. 44

    H. Fossing, S. Thode-Andersen and B. Jørgensen, Marine Chem., 38 (1992) 117.

    Article  CAS  Google Scholar 

  45. 45

    W. A. Pryor, J. Am. Chem. Soc., 82 (1960) 4794.

    Article  CAS  Google Scholar 

  46. 46

    A. Seibert, Z. Phys. Chem. Neue Folge, 97 (1975) 11.

    CAS  Google Scholar 

  47. 47

    H. Sakai, Geochem J., 2 (1968) 29.

    CAS  Google Scholar 

  48. 48

    H. Ohmoto and R. O. Rye, Isotopes of sulfur and carbon. in: Geochemistry of Hydrothermal Ore Deposites (second Edition) (Ed. H. L. Barnes). Wiley & Sons, New York, 1970, CH. 10, pp. 509–567.

    Google Scholar 

  49. 49

    A. G. Harrison and H. G. Thode, Trans. Faraday Soc., 53 (1957) 1648.

    Article  CAS  Google Scholar 

  50. 50

    V. A. Grimenko, L. N. Grimenko and G. D. Zagryazhskaya, Geokhimya, 4 (1969) 484.

    Google Scholar 

  51. 51

    Y. Kiyosu and H. R. Krouse, Geochemical J., 24 (1990) 21.

    CAS  Google Scholar 

  52. 52

    W. F. Hunt, Economic Geology, 10 (1915) 543.

    Article  Google Scholar 

  53. 53

    G. S. Rogers, U.S. Geol. Survey Bull., 653 (1917) 6.

    Google Scholar 

  54. 54

    M. W. Beijerinck,—‘Über Spirillum desulfuricans als Ursache von Sulfate-reduktion. Central blatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung I Originale 1, 1895, pp. 1–9, 49–59, 104–114.

  55. 55

    H. D. Peck, Jr., and T. Lissolo, Symposium of the Society for General Microbiology 42nd. (Nitrogen Sulphur Cycles) Cambridge Univ. Press. Assimilatory and dissimilatory sulfate reduction; Enzymology and Bioenergetics in: Biochemistry of Sulfate Reduction, 1988, pp. 99–132.

  56. 56

    P. B. Barton, Possible role of organic matter in the precipitation of the Mississippi Valley Ores In: Genesis of stratiform lead-zinc-barite-fluorite deposits, (Ed. J. S. Brown) The Economic Geology Publishing Co. Lancaster, PA, 1967, pp. 371–378.

    Google Scholar 

  57. 57

    W. C. Shanks III, J. L. Bischoff and R. J. Rosenbauer, Geochim. Cosmochim., Acta, 45 (1981) 1977.

    Article  CAS  Google Scholar 

  58. 58

    M. J. Mottl, H. D. Holland and R. F. Corr, Geochem. Cosmochim. Acta, 43 (1979) 869.

    Article  CAS  Google Scholar 

  59. 59

    C. S. Spirakis, Mineral. Depos. 26 (1991) 60.

    CAS  Article  Google Scholar 

  60. 60

    J. S. Leventhal, Economic Geology, 85 (1990) 622.

    CAS  Google Scholar 

  61. 61

    R. Sassen, Org. Geochem., 12 (1988) 351.

    Article  CAS  Google Scholar 

  62. 62

    J. W. Wade, J. S. Hanor and R. Sassen, Trans. Gulf Coast Assoc. Geol. XXXIX (1989) 309.

    Google Scholar 

  63. 63

    E. Heydari and C. H. Moore, Geology, 17 (1989) 1080.

    Article  CAS  Google Scholar 

  64. 64

    H. R. Krouse, C. A. Viau, L. S. Flink, A. Ueda and S. Halas, Nature, 333 (1988) 415.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Dedicated to Professor Lisa Heller-Kallai on the occasion of her 65th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldstein, T.P., Aizenshtat, Z. Thermochemical sulfate reduction a review. Journal of Thermal Analysis 42, 241–290 (1994). https://doi.org/10.1007/BF02547004

Download citation

Keywords

  • thermochemical sulfate reduction (TSR)