Skip to main content
Log in

Copper solubility and distribution in doped GaSb single crystals

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

For the GaSb single crystals doped with copper (grown using the Czochralski method without encapsulant in flowing atmosphere of hydrogen) the distribution coefficient of copper in GaSb,k eff=0.0021±0.0006 was found and the copper solubility in GaSb was discussed. The region of copper solubility in GaSb was analyzed on the thermodynamic basis using chemical phase diagram in the Sb−Ga−Cu system. Due to a rather low solubility of copper, its excessive amount in GaSb caused probably an increase of the dislocation density at the end of the GaSb single crystals.

Zusammenfassung

Für mit Kupfer versetzte GaSb-Einkristalle (gezüchtet nach der Czochralski Methode ohne Einbettung in dynamischer Wasserstoffatmosphäre) wurde der Verteilungskoeffizient für Kupfer in GaSb mitk eff=0.00210.0006 ermittelt und die Löslichkeit von Kupfer in GaSb diskutiert. Mittels chemischen Phasendiagrammen des Systemes Sb−Ga−Cu wurde auf thermodynamischer Grundlage der Bereich der Kupferlöslichkeit im GaSb System analysiert. Wegen der eher geringen Löslichkeit von Kupfer verursacht seine Überschußmenge in GaSb ein Ansteigen der Versetzungsdichte am Ende von GaSb-Einkristallen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Štěpánek and V. Šestáková, Thermochim. Acta, 209 (1992) 285.

    Article  Google Scholar 

  2. Z. J. Van der Meulen, J. Phys. Chem. Solids, 28 (1967) 25.

    Article  Google Scholar 

  3. A. Warren, J. Woodall, J. Freeouf, D. Grischkowski, M. Melloch and N. Otsuka, Appl. Phys. Letters, 57 (1990) 1331.

    Article  CAS  Google Scholar 

  4. R. P. Leon, M. Kaminska, Kin Man Yu and E. R. Weber, Phys. Rev., B 46 (1992) 12460.

    Article  CAS  Google Scholar 

  5. R. P. Leon and E. R. Weber, Acta Physica Polonica, A 82 (1992) 664.

    CAS  Google Scholar 

  6. R. P. Leon, P. Werner, C. Eder and E. R. Weber, Appl. Phys. Letters, 61 (1992) 2545.

    Article  CAS  Google Scholar 

  7. C. Eder, V. Schlosser, R. P. Leon and E. R. Weber, Proc. 13th General Conf. CMD, Regensburg 1993, p. 1484.

  8. W. A. Sunder, R. L. Barns, T. Y. Kometani, J. M. Parsey, Jr. and R. A. Laudise, J. Crystal Growth, 78 (1986) 9.

    Article  CAS  Google Scholar 

  9. F. Moravec, V. Šestáková, B. Štěpánek and V. Charvát, Crystal Res. Technol., 24 (1989) 275.

    CAS  Google Scholar 

  10. Crystal Growth: An Introduction, ed. P. Hartman, North-Holland/American Elsevier, New York 1973, p. 223.

    Google Scholar 

  11. V. Šestákova and B. Štěpánek, Thermochim. Acta, 198 (1992) 213.

    Article  Google Scholar 

  12. V. Šestáková, P. Hubík, B. Štěpánek and J. Krištofik, J. Crystal Growth, 132 (1993) 345.

    Article  Google Scholar 

  13. J. P. Garandet, T. Duffar and J. J. Favier, J. Crystal Growth, 96 (1989) 888.

    Article  CAS  Google Scholar 

  14. V. Šestáková and B. Štěpánek, Thermochim. Acta, 209 (1992) 277.

    Article  Google Scholar 

  15. J. O. Betterton and W. Hume-Rotherg, J. Inst. Met., 80 (1952) 459.

    CAS  Google Scholar 

  16. P. R. Subramanian and D. E. Langhlin, APD Program.

  17. E. Hayer, K. L. Komarek and R. Castenet, Z. Metallkd., 68 (1977) 688.

    CAS  Google Scholar 

  18. T. Heknkamp and R. Kossak, Z. Metallkd., 74 (1983) 195.

    Google Scholar 

  19. M. Hansen, in K. Anderko (ed.), Constitution of Binary Alloys, McGraw-Hill, New York, 1958.

    Google Scholar 

  20. The Japanese Society of Calorimetry and Thermal Analysis, ‘Thermodynamic Database MALT2’, 1992, Kagakugijutusha, Tokyo.

  21. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nutall, J. Phys. Ref. Data, 2, Supplement No.2, 1982.

  22. R. Hultgren, P. D. Desai, M. Gleiser and K. K. Kelly, ‘Selected Values of the Thermodynamic Properties of the Elements’, The American Society of Metals, Metals Park, 1973.

    Google Scholar 

  23. Y. Takahashi, H. Kadokura and H. Yokokawa, J. Chem. Thermodyn., 15 (1983) 65.

    Article  CAS  Google Scholar 

  24. L. B. Pankratz, J. M. Stuve and N. A. Gokcen, ‘Thermodynamic Data for Mineral Technology’, Bulletin of United States Bureau of Mines 677, 1984, U. S. Government Printing Office, Washington.

    Google Scholar 

  25. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. D. Frurip, R. A. McDonald and A. N. Syverud, J. Phys. Chem. Ref. Data, 14 Supplement No. 1, 1985.

  26. H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, J. Amer. Cer. Soc., 73 (1990) 649.

    Article  CAS  Google Scholar 

  27. H. Yokokawa, T. Kawada and M. Dokiya, J. Amer. Cer. Soc., 72 (1989) 2104.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šesták, J., Štěpánek, B., Yokokawa, H. et al. Copper solubility and distribution in doped GaSb single crystals. Journal of Thermal Analysis 43, 389–397 (1995). https://doi.org/10.1007/BF02546826

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546826

Keywords

Navigation