Skip to main content
Log in

Influence of transcrystallinity on DSC analysis of polymers

Experimental and theoretical aspects

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Intense parasitic nucleation has been observed at the surface of differential scanning calorimetry samples for various polymers, whereas their crystallization traces exhibit complex shapes. Revisited overall kinetics theories and computer simulation, taking into account small thickness of samples and transcrystallinity effects, allow to explain and reproduce experimental ‘double peaks’, currently observed with polyamide 6-6. The beginning of the transformation and the main peak are attributed to surface and bulk nucleations, respectively. As a consequence, any DSC experiment should be followed by a microscopic observation and more accurate models including thermal gradients and resistances should be developed for their interpretation.

Zusammenfassung

Bei verschiedenen Polymeren wurde an der Oberfläche von DSC-Proben eine intensive parasitäre Keimbildung beobachtet, während ihre Kristallisation komplexe Formen zeigt. Überarbeitete gesamtkinetische Theorien und Computersimulation unter Berücksichtigung dünner Probenstärken und Transkristallinitätseffekte ermöglichen die Deutung und die Reproduzierung experimenteller “Doppelpeaks”, wie sie wie in diesem Falle bei Polyamid 6-6 beobachtet werden. Der Beginn der Umwandlung beziehungsweise der Hauptpeak werden der Keimbildung an der Oberfläche beziehungsweise im Inneren zugeschrieben. Als Folge davon sollten alle DSC-Experimente von einer mikroskopischen Untersuchung gefolgt werden und für deren Interpretation sollten präzisere Modelle unter Einbezug von thermischem Gradient und Widerstand entwickelt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

Mathematical expectancy

e:

Thickness of the sample

f (η) :

Mathematical function related to volume nucleation (Table 1). η is equal to, either ηt, ηx1 or ηx2,

G :

Growth rate of the spherulites

g(κ):

Mathematical function related to surface nucleation (Table 1). κ is equal to, either κt, κx1 or κx2

N o :

Initial density of potential nuclei in the volume

N s :

Initial density of potential nuclei at the surface

n :

Avrami exponent

q:

Activation frequency for the potential nuclei in the volume

q8 :

Activation frequency for the potential nuclei at the surface

R :

Maximum radius for a spherulite

T :

Temperature

T :

Cooling rate

t, u :

Time

X a :

Abscissa of any point of the sample (ranging from −e/2 to +e/2

α:

Transformed volume fraction

χ:

Ozawa parameter

ηx1n, ηx2n:

Adimensional parameters related to volume nuclei (Table 1)

ϕ1, ϕ2, κt, κx1, κx2 :

Adimensional parameters related to surface nuclei (Table 1)

References

  1. A. M. Chatterjee and F. P. Price, J. Polym. Sci., Polym. Phys. Ed., 13 (1975) 2369.

    Article  CAS  Google Scholar 

  2. A. M. Chatterjee and F. P. Price, J. Polym. Sci., Polym. Phys. Ed., 13 (1975) 2391.

    Article  CAS  Google Scholar 

  3. M. R. Kamal and E. Chu, Polym. Eng. Sci., 23 (1983) 27.

    Article  CAS  Google Scholar 

  4. G. V. Fraser, A. Keller and J. A. Odell, J. Appl. Polym. Sci., 22 (1978) 2979.

    Article  CAS  Google Scholar 

  5. H. Janeschitz-Kriegl, Progr. Colloid Polym. Sci. 87 (1992) 117.

    CAS  Google Scholar 

  6. N. Billon, C. Magnet and J. M. Haudin, Eighth Annual Meeting of the Polymer Processing Society, New Dehli, 1992.

  7. N. Billon, C. Magnet, J. M. Haudin and D. Lefebvre, Colloid Polym. Sci., (1994), to be published.

  8. M. R. Kantz and R. D. Corneliussen, J. Polym. Sci., Polym. Lett. Ed., 11 (1973) 279.

    Article  CAS  Google Scholar 

  9. T. He and R. S. Porter, J. Appl. Polym. Sci., 35 (1988) 1945.

    Article  CAS  Google Scholar 

  10. M. G. Huson and W. J. Mc Gill, J. Polym. Sci., Polym. Chem. Ed., 22 (1984) 3571.

    Article  CAS  Google Scholar 

  11. F. D. Pretel, Internal Report, Mastère MATMEF, Ecole Nationale Supérieure des Mines de Paris 1991.

  12. J. M. Haudin and N. Billon, Progr. Colloid Polym. Sci., 87 (1992) 132.

    Article  CAS  Google Scholar 

  13. N. Billon, Ph. Barq and J. M. Haudin, Int. Polym. Proc., 6 (1991) 348.

    CAS  Google Scholar 

  14. C. H. Wu, G. Eder and H. Janeschitz-Kriegl, Colloid Polym. Sci., 271 (1993) 1116.

    Article  CAS  Google Scholar 

  15. R. S. Stein and J. Powers, J. Polym. Sci., 56 (1962) S9.

    Article  Google Scholar 

  16. J. M. Escleine, B. Monasse, E. Wey and J. M. Haudin, Colloid Polym. Sci., 262 (1984) 306.

    Article  Google Scholar 

  17. N. Billon, J. M. Escleine and J. M. Haudin, Colloid Polym. Sci., 267 (1989) 668.

    Article  CAS  Google Scholar 

  18. N. Billon and J. M. Haudin, Colloid Polym. Sci., 267 (1989) 1064.

    Article  CAS  Google Scholar 

  19. A. N. Kolmogoroff, Izvest. Akad. Nauk. SSR, Ser. Math., 1 (1937) 335.

    Google Scholar 

  20. M. Avrami, J. Chem. Phys., 7 (1939) 1103.

    Article  CAS  Google Scholar 

  21. M. Avrami, J. Chem. Phys., 8 (1940) 212.

    Article  CAS  Google Scholar 

  22. M. Avrami, J. Chem. Phys., 9 (1941) 177.

    Article  CAS  Google Scholar 

  23. U. R. Evans, Trans. Faraday Soc., 41 (1945) 365.

    Article  CAS  Google Scholar 

  24. N. Billon and J. M. Haudin, Ann. Chim. Fr., 15 (1990) 1.

    CAS  Google Scholar 

  25. N. Billon, Thesis, Ecole Nationale Supérieure des Mines de Paris, 1987.

  26. N. Billon and J. M. Haudin, Ann. Chim. Fr., 15 (1990) 173.

    Google Scholar 

  27. C. Magnet, Internal Report, Ecole Nationale Supérieure des Mines de Paris, CEMEF, 1990.

  28. 28.T. Ozawa, Polymer, 12 (1971) 150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billon, N., Haudin, J.M. Influence of transcrystallinity on DSC analysis of polymers. Journal of Thermal Analysis 42, 679–696 (1994). https://doi.org/10.1007/BF02546742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546742

Keywords

Navigation