Skip to main content
Log in

The thermal transformation of an aromatic poly (amide), poly (ortho-oxyamide) and poly (benzoxazole)

  • Polymers
  • Published:
Journal of Thermal Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The thermal behaviour of three aromatic polymers, poly(3,3-dioxy-4,4-diphenylmethane) (POA), poly(2,2-m-phenylene-5,5-dibenzoxazolemethane) (PBO) and a commercial poly-(phenyleneisophthalamide) (Phenylon) was studied by thermal analysis, i.e. DSC and TG. PBO was formed by the progressive thermocyclization of POA. By transforming POA into PBO the thermal stability was increased proportionally to the degree of cyclization, due to the stiffening of the polymer chain. PBO was found to be more thermally stable than Phenylon. The activation energies of the desorption of moisture, cyclization and thermal degradation of the polymers in both nitrogen and air were determined from non-isothermal TG data.

Zusammenfassung

Mittels DSC und TG wurde das thermische Verhalten von drei aromatischen Polymeren untersucht: Poly(3,3-dioxy-4,4-diphenylmethan) (POA), Poly(2,2-m-Phenylen-5,5-dibenzoxazolmethan) (PBO) und handelsübliches Poly (phenylen-isophthalamid) (Phenylon). PBO in PBO erhöht sich wegen der Versteifung der Polymerketten die thermische Stabilität proportional zum Cyclisierungsgrad. PBO ist thermisch stabiler als Phenylon. Anhand der nichtisothermen TG-Daten wurden sowohl in Stickstoff als auch in Luft die Aktivierungsenergien von Feuchtigkeitsdesorption, Cyclisierung und thermischem Abbau der Polymere ermittelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. David, ‘Thermal Degradation of Polymers’ in ‘Comprehensive Chemical Kinetics’, Eds. C. H. Bamford, C. F. H. Tipper, Vol. 14, Elsevier, Amsterdam 1975, pp. 131–152.

    Google Scholar 

  2. A. A. Atrushkevich and A. J. Alekseev, Polim. Stroit. Mater., (1975) 103.

  3. A. A. Atrushkevich, Yu. I. Tolchinskii, V. A. Khomutov, G. M. Tseitlin and V. V. Korshak, Vysokomol. Soedin., Ser A,21 (1979) 229.

    CAS  Google Scholar 

  4. V. V. Korshak, S. A. Pavlova, I. A. Gribova, P. N. Gribkova, Yu. L. Aretisyan, N. I. Bekasova and L. G. Komarova, Vysokomol. Soedin. Ser A, 21 (1979) 30.

    CAS  Google Scholar 

  5. N. N. Vosnesenskaya, G. I. Braz, A. Ya. Yakubovich, Vysokomol. Soedin. Ser A, 14 (1975) 1822.

    Google Scholar 

  6. T. Ozawa, J. Thermal Anal., 5 (1973) 563.

    Article  CAS  Google Scholar 

  7. T. Ozawa, J. Thermal Anal., 7 (1975) 601.

    Article  CAS  Google Scholar 

  8. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Article  CAS  Google Scholar 

  9. J. H. Flynn and L. A. Wall, Polym. Letters, 4 (1966) 323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voloshchuk, K.A., Popovic, I., Martinov, S.V. et al. The thermal transformation of an aromatic poly (amide), poly (ortho-oxyamide) and poly (benzoxazole). Journal of Thermal Analysis 40, 773–782 (1993). https://doi.org/10.1007/BF02546651

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546651

Keywords

Navigation