Skip to main content
Log in

Polymer crystallization

Isothermal and non-isothermal spherulite growth parameters from optical microscopy and differential scanning calorimetry

  • Polymers
  • Published:
Journal of Thermal Analysis Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (dual furnace, null-balance, DSC) and optical microscopy (OM) have been used to study the isothermal crystallization kinetics of poly(oxymethylene)-POM. The non-isothermal crystallization of the same material has also been studied by optical microscopy.

A very controversial problem is whether the isothermal kinetic parameters may be applied to describe the non-isothermal crystallization. The results show that the kinetic spherulite growth parameters obtained by non-isothermal optical microscopy are, within the experimental errors involved, the same as those obtained by isothermal optical microscopy or isothermal DSC. The importance of this finding is highlighted.

Zusammenfassung

Mittels DSC (Doppelofen, Nullwaage) und Lichtmikroskopie wurde die isotherme Kristallisationskinetik von Poly(oxymethylen)-POM untersucht. Mittels Lichtmikroskopie wurde auch die nichtisotherme Kristallisation dieses Materiales untersucht.

Ein sehr umstrittenes Problem ist, ob die isothermen kinetischen Parameter zur Beschreibung der nichtisothermen Kristallisation verwendet werden können. Die Resultate zeigen, daß die mittels nichtisotherme Lichtmikroskopie erhaltenen kinetischen Sphärolithwachstumsparameter innerhalb der Fehlergrenzen dieselben sind, die mittels isothermer Lichtmikroskopie oder isothermer DSC erhalten wurden. Die Wichtigkeit dieser Erkenntnis wird unterstrichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Turnbull and J. C. Fisher, J. Chem. Phys., 17 (1941) 71.

    Article  Google Scholar 

  2. J. D. Hoffman, SPE Transactions, 4 (1964) 315.

    CAS  Google Scholar 

  3. J. D. Hoffman, G. T. Davies and J. I. Lauritzen, The Rate of Crystallization of Linear Polymers with Chain Folding, in Treatise on Solid State Chemistry, 3, Plenum Press, 1976.

  4. R. L. Miller, Flow Induced Crystallization (Ed. R. L. Miller), Gordon and Breach Sci. Publishers Ltd., 1979, p. 31.

  5. R. D. Icenogle, J. Polym. Sci. Polym. Phys. Ed. 23 (1985) 1369.

    Article  CAS  Google Scholar 

  6. R. M. Patel and J. E. Spruiell, Polym. Eng. & Sci., 31 (1991) 730.

    Article  CAS  Google Scholar 

  7. C. F. Friedl and N. J. McCaffrey, SPE Antec, 1991, p. 330.

  8. T. W. Chan and A. I. Isayev, SPE Antec, 1992, p. 1148.

  9. J. A. Martins and J. J. C. Cruz-Pinto, Proc. ICTA-10 Vol. 2 Wiley & Sons, Chichester 1993, p. 621.

    Google Scholar 

  10. J. M. Avrami, J. Chem. Phys., 7 (1939) 1103; 8 (1940) 212; 9 (1941) 177.

    Article  CAS  Google Scholar 

  11. M. C. Tobin, J. Polym. Sci., Polym. Phys. Ed., 12 (1974) 399; 14 (1976) 2253; 15 (1977) 2269.

    Article  CAS  Google Scholar 

  12. Z. Pelzbauer and A. Galeski, J. Polym. Sci., Polym. Phys. Ed., 38 (1972) 23.

    Google Scholar 

  13. J. D. Hoffman, Polymer 29 (1983) 3.

    Article  Google Scholar 

  14. J. A. Martins, M. Sc. Dissertation, Univ. Minho and Lisboa, Portugal (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, J.A., Cruz-Pinto, J.J.C. & Oliveira, M.J. Polymer crystallization. Journal of Thermal Analysis 40, 629–636 (1993). https://doi.org/10.1007/BF02546633

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546633

Keywords

Navigation