, 34:219 | Cite as

Modern freshwater microbial carbonates: thePhormidium stromatolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France)

  • Pierre Freytet
  • Alert Plet


The relationships of microstructure and vegetal remains, obtained by decalcification, were studied in Modern tufa from Burgundy, in order to try to link a given species with a particular crystal habitus. The edifices have various shapes (coatings on floors; encrusted pebbles, shells, vegetal shoots, mosses; oncolites; hydrodynamically shaped tufts). The biological content is rich in algae and animals, mainly at the proximity of springs, even ifPhormidium incrustatum is the predominant species. It is associated with several species ofGongrosira, Schizothrix, andOocardium stratum, the latter only known by its specific crystallizations. Among the animals, we point the galleries ofPsychomiidae (Trichoptera= Phrygan) larvae. The algae and animals are associated within a “biological felt” (in the sense ofForel, 1901). Some species are encrusted by calcite crystals of typical habitus (micrite:Phormidium incrustatum, Gongrosira andSchizothrix, ssp; sparite:Oocardium andBatrachospermum), and there are very little diagenetic modifications. The fabric results in an alternation of seasonal light laminations composed of juxtaposed bundles ofPhormidium incrustatum α, and dark laminations due to parallel filaments ofPhormidium incrustatum β. The influence of other algal species on shape and the internal fabric of the laminations is negligible.Phormidium incrustatum tufa are common in Western Europe, and probably have some fossil analogue in the Upper Cretaceous and Tertiary; the strongly differ from most older stromatolitic microstructures. Half of the studied tufa can suffer summer exposure and winter frost but related particular features do not seem to be preserved in the stromatolitic edifices.


Tufa Travertine Modern Stromatolite Microbial Calcification Cyanophyte France Recent 


  1. Abell, P.I., Awramik, S.M., Osborne, R.H. &Tomelli, S. (1982): Plio-pleistocene lacustrine stromatolites from Lake Turkana, Kenya: morphology, stratigraphy and stable isotopes.—Sed. Geol.,32, 1–26, AmsterdamCrossRefGoogle Scholar
  2. Anadon, P. &Zamarreño, I. (1981): Paleogene non marine algal deposits of the Ebro Basin, Northeastern Spain.—In:Monty C. (ed): Phanerozoic stromatolites.—140–154, Berlin (Springer)Google Scholar
  3. Argenio, B.d’ &Ferreri, V. (1992): Ambienti di depositione e litofacies dei travertini quaternari dell’Italia centro-meridionale.— Mem. Soc. Geol. Ital.,41, (1988), 861–868 (publication 1992), RomaGoogle Scholar
  4. Augier, J. (1966): Flore des Bryophytes, Morphologie, anatomie, biologie, écologie, distribution géographique.—703 p, Paris (Lechevallier)Google Scholar
  5. Awramik, S.M. (1984): Ancient stromatolites and microbial mats.—In:Cohen, Y.R.W., Castenholz, R.W. &Halvorsen, H.O. (eds.): Microbial mats.—1–22, New York (Allan Liss)Google Scholar
  6. Bemmer A. &Overbeck, J. (1993): Zooplancton grazing on bacteria.—In:Ouerbeck, J. &Chrost, R.J. (ed.): Microbiology of Lake Plubsee.—Ecol. Studies,105, 251–269, Berlin (Springer)Google Scholar
  7. Bertrand H. (1954): Les Insectes aquatiques d’Europe.—Encyclop. entomol., 548 p., Paris (Lechevallier)Google Scholar
  8. Blum, J.L. (1956): The ecology of river algae.—Bot. Rev.,22, 281–341, New YorkCrossRefGoogle Scholar
  9. — (1957): An ecological study of the algae of the Saline River, Michigan.—Hydrobiologia,9/4, 361–408, The HagueCrossRefGoogle Scholar
  10. Bourrelly, P., Les Algues d’eau douce, I, Algues vertes (1966): 512 p.; II, Algues jaunes et brunes (1968): 440 p.; III, Eugléniens, Péridiniens, Algues rouges et bleues, (1970): 483 p; Complément, III (1988): 117 p., Paris (Boubée)Google Scholar
  11. Bradley, W.H. (1929): Algal reefs and oolithes of the Green River Formation.—U.S. Geol. Survey, Prof. Paper,154-G, 203–223, WashingtonGoogle Scholar
  12. — (1963): Unmineralized fossil Bacteria.—Science,141, 919–921, WashingtonCrossRefGoogle Scholar
  13. Braithwaite, C.J.R. (1979): Crystal texture of recent fluvial pisolites and laminated crystalline crust in Dyfed, South Wales.—J. Sed. Petrol.,49, 181–194, TulsaGoogle Scholar
  14. Buccino, G., Argenio, B.d’, Ferreri, V., Brancaccio, L., Ferreri, M., Panichi, C. &Stanzione, D. (1978): I travertini della bassa valle del Tanagro (Campania), studio geomorphologico, sedimentologico e geochimico.—Boll. Soc. geol. Italiana,97, 617–646, RomaGoogle Scholar
  15. Burne, R.V. &Moore, L.S. (1987): Microbialites: Organo-sedimentary deposits of Benthic Microbial Communities.—Palaios,2, 241–254, TulsaGoogle Scholar
  16. Butcher R.W. (1946): Studies on the ecology of rivers. VI, The algal growth in certain highly calcareous streams.—J Ecol.,33, 268–283, Cambridge (University Press)Google Scholar
  17. Casanova, J. (1981a), Etude d’un milieu stromatolitique continental: les travertins plio-pleistocènes du Var, France.—Thèse 3ème cycle Univ. Aix-Marseille III-Luminy, 136 p., 30 pl.-photoGoogle Scholar
  18. — (1981b): Morphologie et biolithogénèse des barrages de travertin.—Actes Coll. Ass. Géogr. Fr., Formations carbonatées extemes, tufs et travertins, Mém. Assoc. française Karstologie,3, 45–54, ParisGoogle Scholar
  19. Casanova, J. &Lapont, R. (1985): Les Cyanophycées encroûtantes des eaux courantes du Var.—Verh. Intern. Verein. Limnol.,22, 2805–2810, StuttgartGoogle Scholar
  20. Caudwell, Ch. (1983): Les RivulariacEes actuelles: interprétation possible de la structure zonée des concrétions stromatolitiques aRivularia haematites—Géobios,16/2, 169–177, LyonGoogle Scholar
  21. — (1987): Etude expérimentale de la formation de micrite et de sparite dans les stromatolites d’eau douce aRivularia—Bull. Soc. géol. France, (7),3, 299–306, ParisGoogle Scholar
  22. Chafetz, H.S. (1986), Marine peloids: a product of bacterially induced precipitation of calcite.—J. Sed. Petrol.,56, 812–817, TulsaGoogle Scholar
  23. Chafetz, H.S. &Buczynsku, C. (1992): Bacterially induced lithification of microbial mats.—Palaios,7, 277–293, TulsaGoogle Scholar
  24. Chafetz, H.S. &Folk, R.L. (1983): Travertines: depositional morphology and the bacterially constructed constituents.—J. Sed. Petrol.,54, 289–316, TulsaGoogle Scholar
  25. Chafetz, H.S., Utech, N.M. &Fitzmaurice, S.P. (1991): Differences in the δ180 δ13C signature of seasonal laminations comprising travertine stromatolites.—J. Sed. Petrol.,61, 1015–1028, TulsaGoogle Scholar
  26. Cipriani, N., Malesani, P. &Vannucci, S. (1977): I travertini dell’Italia centrale.—Boll. Serv. geol. Italia,98, 85–115, RomaGoogle Scholar
  27. Dangeard, P. (1938): Le genreVaucheria spécialement dans la région sud-ouest de la France.—Le Botaniste,39, 183–254, CaenGoogle Scholar
  28. Davis, C.A. (1901): A second contribution to the natural history of the marl.—J. Geol.,9, 491–506, ChicagoGoogle Scholar
  29. Eggleston, J.R. &Dean, W.E. (1976): Freshwater stromatolitic biohermes in Green lake, New York.—In:Walter, M.R. (ed.): Stromatolites.—Develop. in Sedimentol.,20, 479–488, Amsterdam (Elsevier)Google Scholar
  30. Emig, W.H. (1917): The travertine deposits of the Arbuckle Mountains, Oklahoma, with reference to plants agencies concerned in their formation.—Bull. Oklahoma Geol. Survey,29, 1–76, NormanGoogle Scholar
  31. Everitt, D.A. (1981): An ecologival study of an Antartic freshwater pool with particular reference to Tardigrada and Rotifera. —Hydrobiologia,83, 225–237, The HagueCrossRefGoogle Scholar
  32. Folk, R.L., Chafetz, H.S. & Tiezzi, P.A. (1985): Bizarre forms of depositional and diagenetic calcite in hot springs travertines, Central Italy.—In:Schneidermann, N. & Harris, P.M. (eds.): Carbonates cements.—Soc. Econom. Paleont. Mineral., Special Pub.36, 349–369, TulsaGoogle Scholar
  33. Forel, F.A. (1901): Le Lèman, monographie limnologique.—t. III, 715 p., Lausanne (F. Rouge)Google Scholar
  34. Fremy, P. (1926): Incrustations calcaires produites par des Algues d’eau douce.—Ass. franç. Avanc. Sc.,50, 372–375, ParisGoogle Scholar
  35. Freytet, P. (1990): Contribution a l’étude des tufs du Bassin de Paris: typologie des édifices tuffacés (stromatolitiques) des chenaux fluviatiles-aspect microscopique.—In:Lecolle, F. (ed.): Coll. Rouen, 1989.—Trav. Groupe Seine,5, et Bull. Centre Géomorphologie,38, 35–53, CaenGoogle Scholar
  36. Freytet, P., Baltzer, F., Conchon, O., Plaziat, J.C. &Purser, B.H. (1994): Signification hydrologique et climatique des carbonates continentaux quaternaires de la bordure du désert oriental égyptien (côte de la mer Rouge).—Bull. Soc. géol. France,165, 593–601, ParisGoogle Scholar
  37. Freytet, P., Kerp, H. & Broutin, J. (1996): Permian freshwater stromatolites associated with the conifer shootsCassinisia orobica Kerp et. al.—a very peculiar type of fossilization.—Rev. Paleobotany, Palynology (in print), AmsterdamGoogle Scholar
  38. Freytet, P. &Plaziat, J.C. (1965): Importance des constructions algaires dûes a des Cyanophycées dans les formations continentales du Crétacé supérieur et de l’Eocène en Languedoc. —Bull. Soc. géol. France., (7),8, 679–694, ParisGoogle Scholar
  39. Freytet, P. &Plaziat, J.C. (1982): Continental carbonate sedimentation and pedogenesis—Late Cretaceous and Early Tertiary of Southern France.—Purser, B.H. (ed.): Contribution to Sedimentology.—12, 217 p., 49 pl., Stuttgart (Schweizerbart)Google Scholar
  40. Freytet, P. &Plet, A. (1991): Les formations stromatolitiques (tufs calcaires) récentes de la région de Tournus (Saône et Loire).—Géobios,24, 129–139, LyonGoogle Scholar
  41. Freytet, P. &Verrecchia, E. (1993): Complex calcitic crystallizations inNostoc parmelioides Kütz. (freshwater Cyanobacterium): rhombs around trichomes insideNostoc colonies and epiphytic bacterial microstromatolites.—Geomicrobiology Journal,11, 77–84, New YorkGoogle Scholar
  42. Freytet, P. &Verrecchia, E.P. (1995): Discovery of Ca-oxalate crystals associated with fungi in moss-tufa (bryoherms, freshwater “heterogeneous stromatolites”.—Geomicrobiol. J.,13, 117–127, New YorkGoogle Scholar
  43. Fritsch, F.E. (1949): The lime encrustedPhormidium communities of British streams.—Verh. Intern. Verein. Limnol.,10, 141–144, StuttgartGoogle Scholar
  44. — (1950):Phormidium incrustatum, an important member of lime-encrusting communities of flowing waters.—Biol. Jaarb.,17, 27–39, GentGoogle Scholar
  45. Fritsch, F.E. &Pantin, C.F.A. (1946): Calcareous concretions in Cambridgeshire streams.—Nature,157, 397, LondonGoogle Scholar
  46. Geitler, L. (1932):Cyanophycea.—In: Rabenhorst’s Kryptogamen Flora, 14, Reprint 1985, 1196 p., Königstein (Koeltz)Google Scholar
  47. Geitler, L. (1959)Schizophyta: In: Die natürlichen Pflanzenfamilien, 1b.—232 p., Berlin (Duncker & Humblot)Google Scholar
  48. Gerdes, G., Dunajtschik-Piewak, K., Riege, H., Taher, A.G., Krumbein, W.E. &Reineck, H.E. (1994): Structural diversity of biogenic carbonate particles in microbial mats.—Sed.,41, 1273–1294, OxfordCrossRefGoogle Scholar
  49. Geurts, M.A. (1976): Genèse et stratigraphie des travertins de fond de vallée en Belgique.—Acta geographica Lovaniensia,16, 1–66, LouvainGoogle Scholar
  50. Gleason, P.J. &Spackman, W. (1974): Calcareous periphyton and water geochemistry in the Everglades.—Miami Geol. Soc., Mem.2, 146–181, MiamiGoogle Scholar
  51. Golubic, S. (1967): Algenvegetation der Felsen. Eine ökologische Algenstudie im dinarischen Karst-Gebiet.—Binnengewässer,23, 1–183, StuttgartGoogle Scholar
  52. — (1969): Cyclic and non cyclic mechanisms in the formation of travertine.—Verh. Intern. Verein. Limnol.17, 956–961, StuttgartGoogle Scholar
  53. — (1973): The relationship between the blue green algae and the carbonate deposits.—In:Carr, N.G. &Whitton, B.A. (ed.): The biology of blue-green algae.—434–472, Oxford (Blackwell)Google Scholar
  54. — (1976): Organisms that built stromatolites.—In:Walter, M.R. (ed.): Stromatolites.—Developments in Sedimentology20, 113–126, Amsterdam (Elsevier)Google Scholar
  55. Golubic, S. &Fischer, A.G. (1976): Freshwater calcareous incrustations formed by algae.—Verh. Intern. Verein. Limnol.,19, 2315–2323, StuttgartGoogle Scholar
  56. Golubic, S., Violante, C., Ferreri, V. &D’Aregenio, B. (1993): Algal control and early diagenesis in Quaternary travertine formation (Rochetta a Volturno, Central Apennines).—In:Barattolo, F. et al.: Studies on fossil benthic algae.—Boll. Soc. Paleontol. Ital., Special Vol.1, 231–247, Modena (Mucchi)Google Scholar
  57. Gomont, M. (1892): Monographie des Oscillariées.—Ann. Sci. Nat., série 7, Botanique, vol.15, 263–368, pl. 6–14; vol.16, 91–264, pl. 1–7, ParisGoogle Scholar
  58. Grant, I.F., Egan, E.A. &Alexander, M. (1983). Measurement of rate of grazing of the OstracodaCyprinotus carolinensis on blue green algae.—Hydrobiologia,106, 199–208. The HagueCrossRefGoogle Scholar
  59. Grey, K. (1989): Handbook for the study of Stromatolites and associated structures.—Stromatolites Newsletter,14, 82–140Google Scholar
  60. Heering, W. (1914): ChlorophyceaeIII, Ulothricales, Microsporales, Oedogoniales.—In:Pascher, A.: Die Süßwasserflora Deutschlands, Österreich und der Schweiz.—vol.6, 250 p., Jena (G. Fischer)Google Scholar
  61. — (1921): Chlorophyceae IV: Siphonocladiales, Siphonales.— In:Pascher, A.: Die Süßwasserflora Deutschlands, Österreich und der Schweiz.—vol.7, 103 p., Jena (G. Fischer)Google Scholar
  62. Hockin, D.C. (1984): The fauna and flora associated with mat of the CyanobacteriaPhormidium in the Lancaster Canal, England. —Arch. f. Hydrobiol.,102, 193–199, StuttgartGoogle Scholar
  63. Hofmann, H.T. (1969): Attributes of stromatolites.—Geol. Survey Canada Paper69-39, 58 p., OttawaGoogle Scholar
  64. — (1973): Stromatolites: characteristics and utility.—Earth Sci. Rev.,9, 339–373, AmsterdamCrossRefGoogle Scholar
  65. Irion, G. &Müller, G. (1968): Mineralogy, petrology and chemical composition of some calcareous tufa from the Schwäbische Alb, Germany.—In:Müller, G. &Friedman, G.M. (ed.): Recent development in carbonate sedimentology in Central Europe.—156–171, Berlin (Springer)Google Scholar
  66. Jauzein, A., Perthuisot, M. & Perthuisot J.P. (1972): Feuille de Tournus 1/50.000ème, n 602.—BRGM (ed), ParisGoogle Scholar
  67. Kann, E. (1973): Bemerkungen zur Systematik und Ökologie einiger mit kalkinkrustierterPhormidiumarten.—Schweiz. Z. Hydrol.,35, 141–151, BaselCrossRefGoogle Scholar
  68. — (1978): Systematik und Ökologie der Algen österreichischer Bergbäche.—Archiv. Hydrobiol., Suppl.53, 405–643, StuttgartGoogle Scholar
  69. Kindle, E.M. (1927): Therole of thermal stratification in lacustrine sedimentation.—Trans. Roy. Soc. Canada,21, 1–36, OttawaGoogle Scholar
  70. Koban, C.G. &Schweigert, G. (1993): Microbial origin of travertine fabrics-two examples from southern Germany (Pleistocene Stuttgarttravertines and Miocene Riedöschingen travertine).—Facies,29, 251–264, pl. 47–49, ErlangenGoogle Scholar
  71. Langeron, M. (1902): Contribution a l’étude de la flore de Sézanne.—Bull. Soc. Hist. Nat. Autun,15, 59–84, AutunGoogle Scholar
  72. Lecolle, F. (ed.) (1989): Les tufs et travertins quaternaires des bassins de la Seine et de la Somme, et du littoral cauchois— Bull. Centre Géomorphologie,37, 126 p., CaenGoogle Scholar
  73. Leroux, M. (1907–1908): Recherches biologiques sur le Lac d’Annecy.—Ann. Biol. lac.,2, 220–387, BruxellesGoogle Scholar
  74. Logan, B.W., Rezak, J.F. &Ginsburg, R.N. (1964): Classification and environmental significance of algal stromatolite.—J. Geol.,72, 68–93, ChicagoCrossRefGoogle Scholar
  75. Love, K. C. &Chafetz, H.S. (1988): Diagenesis of laminated travertine crusts, Arbuckle Mountains, Oklahoma.—J. Sed. Petrol.,58, 441–445, TulsaGoogle Scholar
  76. Margaleff, R. (1949): Las asociaciones de algas en las aguas dulces de pequeño volumen del Noreste de España.—Vegetatio,1, 258–284, The HagueGoogle Scholar
  77. Marker, A.F.H. (1976): The benthic algae of some streams in Southern England. I. Biomass of the epilithion in some small streams.—J. Ecol.,64, 343–358, Cambridge (University Press)Google Scholar
  78. Meunier, S. (1898): Observations relatives au dépôt de certains travertins calcaires.—Comptes Rendus Acad. Sciences,129, 659–660, ParisGoogle Scholar
  79. Monty, C.L.V. (1973): Remarques sur la nature, la morphologie et la distribution spaciale des stromatolithes.—Sci. de la Terre,18, 189–212, NancyGoogle Scholar
  80. — (1976): The origin and development of crypalgal fabric.—In:Walter, M.R. (ed.): Stromatolites.—Developments in Sedimentology,20, 193–249, Amsterdam (Elsevier)Google Scholar
  81. Monty, C.L.V. &Mas, J.R. (1981):—Lower (Wealdian) bluegreen algal deposits of the province of Valencia, Eastern Spain.—In:Monty, C.L.V. (ed.): Phanerozoic Stromatolites. —85–120, Berlin (Springer)Google Scholar
  82. Murray, G. (1895): Calcareous pebbles formed by algae.— Phycolog. Mem. Part3, 73–77, pl. 19Google Scholar
  83. Nickel, E. (1982): Alluvial-fan-carbonate facies with evaporites, Eocene Guarga Formation, Southwestern Pyrenees, Spain.— Sed.,29, 761–796, Oxford.CrossRefGoogle Scholar
  84. Obenlüneschoss, J. & Schneider, J, (1991): Ecology and calcification pattern ofRivularia (Cyanobacteria).—In:Anagnostidts, K., Hickel, B., & Komarek, J. (eds): Proc. 11th Symp. IAC. —Arch. Hydrobiol., Suppl. Vol.92, (Algological studies64). 489–502, BerlinGoogle Scholar
  85. Ordeñez, S., Carball, R. &Garcia del Cura, A. (1980): Carbonatos biogenicos actuales en la cuenca del rio Dulce (provincia de Gudalajara).—Bol. Real Soc. Española Hist. nat.,78, 303–315, MadridGoogle Scholar
  86. Pedley, H.M. (1990): Classification and environmental models of cool freshwater tufas.—Sedim. Geol.,68, 143–154, Amsterdam.CrossRefGoogle Scholar
  87. — (1992): Freshwater (phytoherms) reefs: the role of biofilm and their bearing on marine reef cementation.—Sedim. Geol.,79, 255–274, AmsterdamCrossRefGoogle Scholar
  88. — (1994): Prokaryote-microphyte biofilms and tufas: a sedimentological perspective.—Kaupia, Darmstädter Beiträge zur Naturgeschichte,4, 45–60, DarmstadtGoogle Scholar
  89. Pentecost, A. (1985): Association of Cyanobacteria with tufa deposits: identity, enumeration, and nature of the sheath material revelated by histochemistry.—Geomicrobiol. J.,4, 285–289, New YorkGoogle Scholar
  90. — (1987): Growth and calcification of the freswater CyanobacteriumRivularia haematites.—Proc. R. Soc. London, B.232, 125–136, LondonGoogle Scholar
  91. — (1988a): Growth and calcification of the CyanobacteriumHomeothrix crustacea.—J. Gen. Microbiol.,143, 2665–2671Google Scholar
  92. — (1988b): Observation on the growth rates and calcium carbonate deposition in the green algaGongrosira.—New Phytologist,110, 249–253, CambridgeCrossRefGoogle Scholar
  93. — (1991a): Calcification processes in Algae and Cyanobacteria. —In:Riding, R. (ed.): Calcareous algae and stromatolites.— 3–20, Berlin (Springer)Google Scholar
  94. — (1991b): A new interesting site for the calcite encrusted DesmidOocardium stratum Naeg. in the British Isles.— British Phycol. J.,26, 297–301.Google Scholar
  95. Pentecost, A. &Riding, R. (1986): Calcification in Cyanobacteria. —In:Leadbeater, B.S.G. &Riding, R. (ed): Biomineralization in lower plants and animals.—73–90, Oxford (Clarendon Press).Google Scholar
  96. Pentecost, A. &Tortora, P. (1989): Bagni di Tivoli, Lazio: a modern travertine-depsiting site and its associated microorganisms. —Boll. Soc. geol. Italia,108, 315–324, RomaGoogle Scholar
  97. Printz, H. (1964): Die Chaetophoralen der Binnengewässer, Eine systematische Übersicht.—Hydrobiologia,24, 1–376, 112 pl., The HagueCrossRefGoogle Scholar
  98. Riding, R. (1977): Skeletal stromatolites.—In:Flügel, E. (ed.): Fossil algae, recentresults and developments.—57–60, Berlin (Springer)Google Scholar
  99. — (1991a): Classification of microbial carbonates.—In:Riding, R. (ed.): Calcareous algae and stromatolites.—21–51, Berlin (Springer).Google Scholar
  100. — (1991b): Calcified Cyanobacteria.—In:Riding, R. (ed.): Calcareous algae and stromatolites.—55–87, Berlin (Springer)Google Scholar
  101. Roddy, H.J. (1915): Concretions in stream formed by agency of blue-green algae and related plants.—Am. Philos. Soc. Proc.,54, 246–258, PhiladelphiaGoogle Scholar
  102. Sabater, S. (1989): Encrusting algal assemblages in a Mediterranean river basin.—Arch. Hydrobiol.,114, 555–573, StuttgartGoogle Scholar
  103. Schmidle, W. (1910): Postglaziale Ablagerungen im nordwestlichen Bodenseegebiet.—Neues Jahrb. Mineralogie, Geologie und Paläontologie,2, 104–122, StuttgartGoogle Scholar
  104. Serpette, M. (1947): Observations écologiques et systématiques sur quelques Cyanophycées de Tunisie.—Bull. Soc. Bot. France,94, 306–309, ParisGoogle Scholar
  105. Simon, R.D. (1984): Evolution of microbial community: problems and technological solutions.—In:Cohen, Y.R.W., Castenholz R.W., &Halworsen, H.O. (eds.): Microbial mats: stromatolites.—437–447, New York (Alan Liss)Google Scholar
  106. Spiro, B. &Penetecost, A. (1991): One day in the life of a stream —a diurnal inorganic carbon mass balance for a travertine-depositing stream(Waterfallbeck, Yorkshire).—Geomicrobiol. J.,9, 1–11, New YorkCrossRefGoogle Scholar
  107. Symoens, J.J. (1951): Esquisse d’un système des associations algales d’eau douce.—Verh. Intern. Verein. Limnol.,11, 395–408, StuttgartGoogle Scholar
  108. — (1957): Les eaux douces des Ardennes et des régions voisines: les milieux et leur végétation algale.—Bull. Soc. Royale Bot. Belgique,89, 111–314, BruxellesGoogle Scholar
  109. Szulc, J. &Smyk, B. (1994): Bacterially controlled calcification of freshwaterSchizothrix-stromatolites: an example from the Pieniny Mts, Southern Podland.—In:Bertrand-Sarfati, J. &Monty, C. (eds.): Phanerozoic stromatolites, II.—31–51, Dordrecht (Kluwer)Google Scholar
  110. Thienemann, A. (1934): Eine gesteinbildende Chironomide (Lithotanytarsus emarginatus Goeth.).—Z. f. Morphol. u. Ökologie der Tiere,28, 480–496, Berlin (Springer)Google Scholar
  111. Thunmark, S. (1926): Bidrag tillkännedomen on recente kalktuffer. —Geol. Fören. Förhandl.,48, 541–583, StockholmGoogle Scholar
  112. Tilden, J.E. (1897): Some new species of Minnesota algae which live upon calcareous or siliceous matrix.—Bot. Gazette,23, 95–104, pl. 7–9, ChicagoCrossRefGoogle Scholar
  113. Vaudour J. (1984): Les travertins de piedmont: contribution à l’étude des géosystèmes karstiques.—Coll. Montagnes et piedmonts, Rev. Géogr. Pyrénées Sud-Ouest, TravauxI, 349–362, ToulouseGoogle Scholar
  114. Verrecchia, E. (1990): Incidence de l’activité fongique sur l’induration des profils carbonatés de type calcrete pédologique. L’exemple du cycle oxalate-carbonate de calcium dans les encroûtements calcaires de Galilée (Israel).—Comptes Rendus Acad. Sciences,311, II, 1367–1374, ParisGoogle Scholar
  115. Verrecchia, E.P., Dumont, J.L. &Verrecchia, K.E. (1993): Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, Israel.— J. sed. Petrol.,63, 1000–1006, TulsaGoogle Scholar
  116. Wallner, J. (1934): Über die Beteiligung kalkablagernder Pflanzen bei der Bildung südbayerischer Tuffe.—Bibliotheca botanica,110, 29 p., 2 pl., StuttgartGoogle Scholar
  117. Warnstorf, C., Mönkemayer, W. &Schiffer, V. (1914): Bryophyta. —In:Pascher, A.: Die Süßwasserflora Deutschlands, Österreichs und der Schweiz.—vol.14, 222 p., Jena (G. Fischer)Google Scholar
  118. Whitford, L.A. (1956): The communities of algae in the springs and spring streams of Florida.—Ecology,37, 433–442, BrooklynCrossRefGoogle Scholar
  119. Whitford, L.A. &Schumacher L. (1963): Communities of algae in North Caroliana streams and their seasonal relations.— Hydrobiologia,22, 133–196, The HagueCrossRefGoogle Scholar
  120. Whitton, B.A., Khoja, T.M. &Arif I.A. (1986): Water chemistry and algal vegetation of streams in the Asir mountains, Saudi Arabia.—Hydrobiologia,133, 97–106, DordrechtCrossRefGoogle Scholar
  121. Wickstrom, C.E. &Castenholz, R.W. (1978): Association ofPleucocapsa andCalothrix (Cyanophyta) in a thermal stream. —J. Phycol.,14, 84–88CrossRefGoogle Scholar
  122. Winsbourough, B.M., Seeler, J.S., Golubic, S., Folk, R.M. &Marguire, A. Jr. (1994): Recent fresh-water lacustrine stromatolites, stromatolitic mats and oncoids from northeastern Mexico.—In:Bertrand-Sarfati, J. &Monty, C. (eds.): Phanerozoic stromatolites, II.—71–100, Dordrecht (Kluwer)Google Scholar

Copyright information

© Institut für Paläontologie, Universität Erlangen 1996

Authors and Affiliations

  • Pierre Freytet
    • 1
    • 2
  • Alert Plet
    • 3
  1. 1.Verrières le BuissonFrance
  2. 2.Laboratoire Géographie PhysiqueUniversité Paris 7ParisFrance
  3. 3.Laboratoire Géographie PhysiqueUniversité Paris 7Paris

Personalised recommendations