Skip to main content
Log in

Nature of fecal sterols and intestinal bacterial flora

  • Published:
Lipids

Abstract

Sterol excretion in the spontaneously atherosclerosis-susceptible White Carneau (WC) pigeon, the Silver King (SK) pigeon and the Show Racer (SR) pigeon was studied by thin layer chromatography (TLC), argentation TLC and gas liquid chromatography. Unlike man and the chicken, these pigeons excreted no coprostanol or coprostanone derivatives of sterols. Moreover incubation of14C-labeled cholesterol with pigeon feces indicated that, also unlike man and the chicken, these pigeons are unable to convert it to coprostanol. Bacteriologic examination revealed the absence of gram-negative anaerobic flora and of members of the genusBifidobacterium in both the WC and SR pigeons. On the other hand, one of the two SK pigeons examined showed evidence of the presence of bothBacteroids fragilis andB. bifidum in the upper intestinal tract. Although no qualitative experiments were performed, no unusual characteristics of the aerobic flora were noted in these pigeons. In addition, analysis of human stool specimens indicated a “normal” bowel flora. The flora of the intestinal tract of the chicken is similar to that of the human. Because of this similarity, it appears that differences in environment (living conditions, diets) between the human and the chicken are of little consequence. The results obtained in this study suggest the possibility that the anaerobic gram-negative flora and sponsible, at least in part, for the chemical conversion of cholesterol to coprostanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subbiah, M.T.R., B.A. Kottke and I.A. Carlo, Mayo Clin. Proc. 45:729 (1970).

    PubMed  CAS  Google Scholar 

  2. Wells, W.W., and M. Makita, Anal. Biochem. 4:204 (1962).

    Article  PubMed  CAS  Google Scholar 

  3. Eneroth, P., K. Hellström and R. Ryhage, J. Lipid Res. 5:245 (1964).

    PubMed  CAS  Google Scholar 

  4. Subbiah, M.T.R., B.A. Kottke and P.E. Zollman, Comp. Biochem. Physiol. 41:695 (1972).

    Article  CAS  Google Scholar 

  5. Rosenfeld, R.S., D.K. Fukushima, H.L. Hellman and T.F. Gallagher, J. Biol. Chem. 211:301 (1954).

    PubMed  CAS  Google Scholar 

  6. Rosenfeld, R.S., and T.F. Gallagher, Steroids 4:515 (1964).

    Article  CAS  Google Scholar 

  7. Miettinen, T.A., E.H. Ahrens, Jr., and S.M. Grundy, J. Lipid Res. 6:411 (1965).

    PubMed  CAS  Google Scholar 

  8. Subbiah, M.T.R., B.A. Kottke and I.A. Carlo, Lipids 6:517 (1971).

    Article  PubMed  CAS  Google Scholar 

  9. Wood, P.D.S., and D. Hatoff, Ibid. 5:702 (1970).

    Article  PubMed  CAS  Google Scholar 

  10. Martin, W.J., Appl. Microbiol. 22:1168 (1971).

    PubMed  CAS  Google Scholar 

  11. Smith, L. DS., and L.V. Holdeman, “The Pathogenic Anaerobic Bacteria,” Charles C. Thomas, Springfield, Ill., 1968, p. 423.

    Google Scholar 

  12. Willis, A.T., “Anaerobic Bacteriology in Clinical Medicine,” Butterworth & Co., London, 1960, p. 163.

    Google Scholar 

  13. Dowell, V.R., Jr., and T.M. Hawkins, “Laboratory Methods in Anaerobic Bacteriology in NCDC Laboratory Manual,” USDHEW, Public Health Service Publication 1803, Washington D.C., Government Printing Office, 1969, p. 33.

    Google Scholar 

  14. “Outline of Clinical Methods in Anaerobic Bacteriology,” Second review, Virginia Polytechnic Institute and State University Anaerobe Lab., Blacksbury Va., 1970.

  15. Blair, J.E., E.H., Lennette and J.P. Truant, “Manual of Clinical Microbiology,” American Society for Microbiology, Bethesda, Md., 1970, p. 727.

    Google Scholar 

  16. Shields, A.B., and L. Ajello, Science 151:208 (1966).

    Article  PubMed  CAS  Google Scholar 

  17. Gorbach, S.L., Gastroenterology 60:1110 (1971).

    PubMed  CAS  Google Scholar 

  18. Eggerth, A.H., and B.H. Gagnon, J. Bacteriol. 25:389 (1933).

    PubMed  CAS  Google Scholar 

  19. Haenel, H., and W. Müller-Beuthow, Zentralbl. Bacteriol. (Naturwiss) 167:123 (1956).

    CAS  Google Scholar 

  20. Haenel, H., J. Appl. Bacteriol. 24:242 (1961).

    Google Scholar 

  21. Moore, W.E.C., E.P. Cato and L.V. Holdeman, J. Infect. Dis. 119:641 (1969).

    PubMed  CAS  Google Scholar 

  22. Drasar, B.S., J. Pathol. Bacteriol. 94:417 (1967).

    Article  PubMed  CAS  Google Scholar 

  23. Finegold, S.M., and L.G. Miller, Amer. Soc. Microbiol. (Bacteriol. Proc.) 1968:93.

  24. Finegold, S.M., D.J. Posnick, L.G. Miller and W.L. Hewitt, Ernahrungsforschung 10:316 (1965).

    CAS  Google Scholar 

  25. Dam, H., Biochem. J. 28:515 (1934).

    Google Scholar 

  26. Snog-Kjaer, A., I. Prange and H. Dam, J. Gen. Microbiol. 14:256 (1956).

    PubMed  CAS  Google Scholar 

  27. Coleman, D.L., and C.A. Baumann, Arch. Biochem. Biophys. 72:219 (1957).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The following nomenclature has been used for the steroids referred to in this paper: cholesterol, cholest-Δ5-en-3β-ol; coprostanol, 5β-cholestan-3β-ol; campesterol, 24-methylcholest-Δ5-en-3βol; stigmasterol, 24-ethylcholest-Δ5,22-dien-3β-ol; β-sitosterol, 24-ethylcholest-Δ5-en-3β-ol; coprocampestanol, 24-methyl-5β-cholestan-3β-ol; coprostigmastenol, 24-ethyl-5β-cholest-Δ22-en-3β-ol; coprostigmastanol, 24-ethyl-5β-cholestan-3β-ol; coprostanone, 5β-cholestan-3-one; campestanone, 24-methyl-5β-cholestan-3-one; stigmastenone, 24-ethyl-5β-cholest-Δ22-en-3-one; and β-sitostanone, 24-ethyl-5β-cholestan-3-one.

About this article

Cite this article

Martin, W.J., Ravi Subbiah, M.T., Kottke, B.A. et al. Nature of fecal sterols and intestinal bacterial flora. Lipids 8, 208–215 (1973). https://doi.org/10.1007/BF02544637

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02544637

Keywords

Navigation