Skip to main content
Log in

Isolation and partial characterization of aClostridium species transforming para-hydroxybenzoate and 3,4-dihydroxybenzoate and producing phenols as the final transformation products

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Organisms present in methanogenic freshwater lake sediments from the vicinity of Athens, Georgia, were adapted to mineralize 2,4-dichlorophenol. Repeated addition of 0.5 to 2.7 mmol/liter of phenol, and later of 0.5–6.2 mmol/liter p-hydroxybenzoate (p-OHB), to such enrichments led to the conversion of p-OHB to phenol at a rate of up to 100 mmol p-OHB per liter per day. Subsequently, a spore-forming, obligately anaerobic bacterium, strain JW/Z-1, was isolated which transformed p-OHB to phenol and 3,4-dihydroxybenzoate (3,4-OHB) to catechol (1,2-dihydroxybenzene) stoichiometrically without further metabolism of the phenols. The strain did not transform benzoate, 4-chlorophenol, 2,4-dichlorophenol, 4-chlorobenzoate, o- and m-hydroxybenzoate, 2,4- and 3,5-dihydroxybenzoate, 2,3,4- and 3,4,5-trihydroxybenzoate, or 4-aminobenzoate. Yeast extract was required for growth of strain JW/Z-1 and only high concentrations of casein hydrolysate or tryptone could substitute it, to some extent. Except for sodium acetate, and some amino acids together with a 20-fold increased concentration of vitamins, no single carbohydrate or defined organic compound has been found to support growth of this strain in the presence (or in the absence) of 0.2 to 0.5% (w/v) yeast extract. The fermentation products during growth on yeast extract indicated that the metabolism of amino acid degradation was the major source for growth. The decarboxylating activity was inducible by p-OHB for the decarboxylation of p-OHB, and at a lower rate for 3,4-OHB, and by 3,4-OHB only for 3,4-OHB, suggesting that two different enzyme systems exist. The addition of the aromatic amino acids phenol or benzoate did not induce the decarboxylation activity in cultures growing with yeast extract. Growth was observed at temperatures ranging from 12–41°C (Topt, 33–34°C) and at pH-values ranging from 6.0–10.0 (pHopt, 7.2–8.2). The shortest doubling time observed for strain JW/Z-1 was 3.2 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bak F, Widdel F (1986) Anaerobic degradation of phenol and phenol derivatives byDesulfobacterium phenolicum sp. nov. Arch Microbiol 146:177–180

    Article  CAS  Google Scholar 

  2. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  CAS  Google Scholar 

  3. Barik S, Brulla, WJ, Bryant MP (1985) PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntrophy with hydrogenotrophs, and P-2 plusWolinella sp. degrades benzenoids. Appl Environ Microbiol 50:304–310

    PubMed  CAS  Google Scholar 

  4. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann Rev Biochem 50:23–40

    Article  PubMed  CAS  Google Scholar 

  5. Berry DF, Francis AJ, Bollag JM (1987) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51:43–59

    PubMed  CAS  Google Scholar 

  6. Bossert ID, Young LY (1986) Anaerobic oxidation ofp cresol by a denitrifying bacterium. Appl Environ Microbiol 52:1117–1122

    PubMed  CAS  Google Scholar 

  7. Boyd SA, Shelton DR (1984) Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol 47:272–277

    PubMed  CAS  Google Scholar 

  8. Carreira LH, Wiegel J, Ljungdahl LG (1981) Production of ethanol from biopolymers by anaerobic, thermophilic and extreme thermophilic bacteria. I. Regulation of carbohydrate utilization in mutants ofThermoanaerobacter ethanolicus. Biotech Bioeng Symp 13:183–191

    Google Scholar 

  9. Cord-Ruwisch R, Garcia JL (1985) Isolation and characterization of anaerobic benzoate-degrading spore-forming sulfate-reducing bacteriumDesulfotomaculum sapomandens sp. nov. FEMS Microbiol Lett 29:325–330

    Article  CAS  Google Scholar 

  10. Dagley S (1984) Microbial degradation of aromatic compounds. Dev Ind Microbiol 25:53–65

    CAS  Google Scholar 

  11. De Weerd KA, Suflita JM, Linkfield T, Tiedje JM, Pritchard PH (1986) The relationship between reductive dehalogenation and other aryl substituent removal reactions catalyzed by anaerobes. FEMS Microbiol Ecol 38:331–339

    Article  Google Scholar 

  12. Dehning I, Schink B (1989)Malonemonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch Microbiol 151:427–433

    Article  CAS  Google Scholar 

  13. Dehning I, Stieb M, Schink B (1989)Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch Microbiol 151:421–426

    Article  CAS  Google Scholar 

  14. Dimroth P (1987) Sodium ion transport decarboxylases and other aspects of sodium ion-cycling bacteria. Microbiol Rev 51:320–340

    PubMed  CAS  Google Scholar 

  15. Elsden SR, Hilton MG, Waller JM (1965) The endproducts of the metabolism of aromatic amino acids byClostridia. Arch Microbiol 107:283–288

    Article  Google Scholar 

  16. Evans WC (1977) Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (London) 270:17–22

    Article  CAS  Google Scholar 

  17. Ferry JG, Wolfe RS (1976) Anaerobic degradation of benzoate to methane by a microbial consortium. Arch Microbiol 107:33–40

    Article  PubMed  CAS  Google Scholar 

  18. Gibson SA, Suflita JM (1986) Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl Environ Microbiol 52:681–688

    PubMed  CAS  Google Scholar 

  19. Harwood CS, Gibson J (1988) Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacteriumRhodopseudomonas palustris. Appl Environ Microbiol 54:712–717

    PubMed  CAS  Google Scholar 

  20. Healey JB Jr, Young LY (1979) Anaerobic biodegradation of eleven aromatic compounds to methane. Appl Environ Microbiol 38:84–89

    Google Scholar 

  21. Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J 3:1665–1670

    PubMed  CAS  Google Scholar 

  22. Hwang HM, Hodson RE, Lee RF (1986) Degradation of phenol and chlorophenols by sunlight and microbes in estuarine water. Environ Sci Technol 20:1002–1007

    Article  CAS  Google Scholar 

  23. Hsu T, Daniel, SL, Lux MF, Drake HL (1990) Biotransformations of carboxylated aromatic compounds by the acetogenClostridium thermoaceticum: generation of growth-supportive CO2-equivalents under CO2-limited conditions. J Bacteriol 172:212–217

    PubMed  CAS  Google Scholar 

  24. Knoll G, Winter J (1987) Anaerobic degradation of phenol in sewage sludge. Benzoate formation from phenol and carbon dioxide in the presence of hydrogen. Appl Microbiol Biotechnol 25:384–391

    Article  CAS  Google Scholar 

  25. Knoll G, Winter J (1989) Degradation of phenol via carboxylation of benzoate by a defined, obligate syntrophic consortium of anaerobic bacteria. Appl Microbiol Biotechnol 30:318–324

    Article  CAS  Google Scholar 

  26. Kohring G-W, Rogers JE, Wiegel J (1989) Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures. Appl Environ Microbiol 55:348–353

    PubMed  CAS  Google Scholar 

  27. Kohring G-W, Zhang X, Wiegel J (1989) Anaerobic degradation of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Appl Environ Microbiol 55:2735–2737

    PubMed  CAS  Google Scholar 

  28. Kuhn EP, Suflita JM (1989) Dehalogenation of pesticides by anaerobic microorganisms in soil and groundwater—a review. In: Reactions and movement of organic chemicals in soils. Soil Science Society of American Special Publication no. 22, Madison, WI

  29. Kuhn EP, Suflita JM, Rivera MD, Young LY (1989) Influence of alternate electron acceptors on the metabolic fate of hydroxybenzoate isomers in anoxic aquifer slurries. Appl Environ Microbiol 55:590–598

    PubMed  CAS  Google Scholar 

  30. Ljungdahl LG, Wiegel J (1986) Anaerobic fermentations. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society of Microbiology, Washington, DC, pp 84–96

    Google Scholar 

  31. Martin AK (1982) The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols, Br J Nutr 48:497–507

    Article  PubMed  CAS  Google Scholar 

  32. Mountfort DO, Bryant MP (1982) Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 133:249–256

    Article  CAS  Google Scholar 

  33. Mountfort DO, Brulla WJ, Krumholz LR, Bryant MP (1984)Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystem. Int J System Bacteriol 34: 216–217

    Google Scholar 

  34. Neilson AH, Allard A-S, Hynning P-A, Remberger M (1988) Transformation of halogenated aromatic aldehydes by metabolically stable anaerobic enrichment cultures, Appl Environ Microbiol 54:2226–2236

    PubMed  CAS  Google Scholar 

  35. Schauerle W, Lay JP, Klein W, Korte F (1982) Long-term fate of organochlorine xenobiotics in aquatic ecosystems, Ecotoxicol Environ Safety 5:560–569

    Article  Google Scholar 

  36. Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes byPelobacter acidigallici gen. nov., a new strictly anaerobic, nonsporeforming bacterium. Arch Microbiol 133:195–201

    Article  CAS  Google Scholar 

  37. Sharak Genthner BR, Price WA II, Pritchard PH (1989) Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl Environ Microbiol 55:1466–1471

    Google Scholar 

  38. Sharak Genthner BR, Price WA II, Pritchard PH (1989) Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol 55:1472–1476

    Google Scholar 

  39. Sharak Genthner BR, Towsend GT, Chapman PJ (1989) Anaerobic transformation of phenol to benzoate viapara-carboxylation: use of fluorinated analogues to elucidate the mechanism of transformation. Biochem Biophys Res Commun 162:945–951

    Article  Google Scholar 

  40. Sleat R, Robinson JP (1984) The bacteriology of anaerobic degradation of aromatic compounds—a review. J Appl Bacteriol 57:381–394

    PubMed  CAS  Google Scholar 

  41. Suflita JM, Gibson SA, Beeman RE (1988) Anaerobic biotransformations of pollutant chemicals in aquifers, J Ind Microbiol 3:179–194

    Article  CAS  Google Scholar 

  42. Szewzyk R, Pfennig N (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-reducingDesulfobacterium catecholicum sp. nov. Arch Microbiol 147:163–168

    Article  CAS  Google Scholar 

  43. Thauer RK, Jungerman K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria, Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  44. Taylor BF, Heeb MJ (1972) The anaerobic degradation of aromatic compounds by a denitrifying bacterium. Arch Microbiol 83:165–171

    CAS  Google Scholar 

  45. Taylor BF, Campbell WL, Chinoy I (1970) Anaerobic degradation of the benzene nucleus by a facultative anaerobic microorganism. J Bacteriol 102:430–437

    PubMed  CAS  Google Scholar 

  46. Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148:213–217

    Article  PubMed  CAS  Google Scholar 

  47. Tschech A, Fuchs G (1989) Anaerobic degradation of phenol via carboxylation to 4-hydroxy-benzoate: in vitro study of isotope exchange between14CO2 and 4-hydroxybenzoate. Arch Microbiol 152:594–599

    Article  CAS  Google Scholar 

  48. Tschech A, Schink B (1986) Fermentative degradation of monohydroxybenzoates by defined syntrophic cocultures. Arch Microbiol 145:396–402

    Article  CAS  Google Scholar 

  49. van den Tweel WJJ, Kok JB, De Bont JAM (1987) Reductive dechlorination of 2,4-dichloro-benzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate byAlcaligenes denitrificans NTB-1, Appl Environ Microbiol 53:810–815

    PubMed  Google Scholar 

  50. Vogel TM, Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 52:200–202

    PubMed  CAS  Google Scholar 

  51. Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Kreig NJ, Holt JG (eds) Bergey's manual for systematic bacteriology, Williams and Wilkins, Baltimore, London, pp 663–679

    Google Scholar 

  52. Wiegel J (1981) Distinction between the Gram reaction and the Gram type bacteria. Int J Syst Bacteriol 31:88

    Google Scholar 

  53. Wiegel J, Quandt L (1982) Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria. J Gen Microbiol 128:2261–2270

    PubMed  CAS  Google Scholar 

  54. Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophilicClostridium thermohydrosulfuricum, J Bacteriol 139:800–810

    PubMed  CAS  Google Scholar 

  55. Wiegel J, Kuk S-U, Kohring GW (1989)Clostridium thermobutyricum sp. nov., a moderate thermophile isolated from a cellulolytic culture, that produces butyrate as the major product. Int J Syst Bacteriol 39:199–204

    Article  CAS  Google Scholar 

  56. Wiegel J, Zhang X, Dalton D, Kohring G-W (1990) Degradation of 2,4-dichlorophenol in anaerobic freshwater lake sediments. In: Tedder W, Pohland FG (eds) Emerging technologies for hazardous waste treatment. ACS-Symposium Books, Washington, DC, pp 119–141

    Google Scholar 

  57. Whitman WB, Jersong S, Sohn S, Caras DS, Premachandran U (1986) Isolation and characterization of 22 mesophilic methanococci. Syst Appl Microbiol 7:235–240

    Google Scholar 

  58. Young LY (1984) Anaerobic degradation of aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 487–523

    Google Scholar 

  59. Young LY, Frazer AC (1987) The fate of lignin and lignin-derived compounds in anaerobic environments, Geomicrobiol J 5:261–293

    Article  CAS  Google Scholar 

  60. Zhang X, Morgan TV, Wiegel J (1990) Conversion of13C-1 phenol to13C-4 benzoate, an intermediate step in the anaerobic degradation of chlorophenols, FEMS Microbiol Lett 67: 63–66

    Article  CAS  Google Scholar 

  61. Zhang X, Wiegel J (1990) Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl Environ Microbiol 56:1119–1127

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wiegel, J. Isolation and partial characterization of aClostridium species transforming para-hydroxybenzoate and 3,4-dihydroxybenzoate and producing phenols as the final transformation products. Microb Ecol 20, 103–121 (1990). https://doi.org/10.1007/BF02543871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02543871

Keywords

Navigation